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round consolidation, a consequence of intensive farming practices, poses challenges to 
soil health and mechanical properties. Assessing Ground consolidation is vital for 
effective tillage and machinery selection in agriculture. Soil Penetration Resistance (SPR) 

serves as a key indicator, impacting water uptake, root growth, and overall crop yields. This study 
explores the intricate relationship between SPR and various soil properties, including moisture, 
bulk density, texture, and organic carbon. Laboratory determination of SPR is expensive and time-
consuming, leading to efforts to predict SPR using indirect methods and mathematical models 
based on easily accessible soil properties. The study employs Artificial Neural Networks (ANN) 
to predict SPR under diverse conditions, considering the impact of tractor speed and soil moisture. 
The research aims to enhance understanding, refine prediction models, and contribute to 
sustainable agricultural practices. The methodology involves comprehensive field experiments, 
soil sampling, and advanced modeling techniques. The results demonstrate the significance of soil 
texture and moisture in SPR predictions, emphasizing the potential of ANN models for accurate 
assessments. The study contributes valuable insights into Ground consolidation, supporting 
improved land management and environmental sustainability in agriculture. 
Keywords: Intensive Farming, Soil penetration, Soil Properties, Organic Carbon. 
Introduction: 

Ground consolidation resulting from the use of heavy agricultural machinery in intensive 
farming practices, such as field cultivation, fertilization, and harvesting, is acknowledged to 
contribute to soil degradation and alterations in soil mechanical properties. The assessment of 
Ground consolidation is not only essential for farmers to gauge the need for tillage practices but 
also imperative for designing and selecting agricultural machinery tailored to different fields for 
effective agronomic management [1]. Soil Penetration Resistance (SPR) is recognized as a crucial 
indicator for evaluating the degree of Ground consolidation. It has been observed to impede water 
uptake by crops, influence root proliferation, and diminish the growth of crop roots, ultimately 
leading to reduced crop yields. Research has highlighted that elevated SPR, coupled with increased 
bulk density resulting from the use of heavy agricultural machinery, restricts crop root system 
growth and limits water availability in deeper soil layers. SPR exhibits significant variations over 
time and is closely linked to changes in soil physical properties, including bulk density, soil water 
content, soil texture, soil organic carbon, matric potential, and degree of saturation [2]. Agricultural 
management practices impact SPR by disturbing the soil and altering its physical properties. For 
instance, the SPR of paddy soils decreases significantly after puddling due to reduced bulk density. 
Increased tillage intensity contributes to SPR reduction by altering soil bulk density, and the 
installation of subsurface drainage affects both soil properties and SPR. Studies have demonstrated 
that SPR is influenced by tine geometry, thickness, and penetration depth in sandy loam soil [3]. 
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Although it is common to determine SPR in the laboratory, this approach is often 
expensive and time-consuming. The accuracy of lab measurements for field parameter 
determination is questioned due to differences in loadings. Field measurements of SPR are feasible 
but introduce uncertainties, as SPR readings are significantly affected by spatial and temporal 
variations in soil physical properties within a field. Moreover, these field-based approaches incur 
costs associated with sampling and laboratory analyses. Consequently, efforts have been directed 
toward utilizing indirect approaches to predict SPR using readily available and cost-effective soil 
properties for various soil types. Numerous researchers have developed different mathematical 
models to predict SPR based on soil physical properties such as moisture content, bulk density, 
soil texture, and organic carbon [4]. 

Researchers have presented mathematical models for predicting SPR, incorporating soil 
physical quality and the contribution of pore water to soil strength. Although some models 
performed well, they were often complex, requiring measurements of multiple soil properties. 
Recent studies have used mathematical models to estimate SPR from water content, bulk density, 
and shear wave velocity, showing good accuracy. However, these models lacked validation using 
in situ measurements, essential for verifying their performance. Some researchers proposed simple 
models to predict SPR based on density, drying, and depth in the field for specific soil types, but 
the applicability of these models to other soil types remains uncertain [5]. 

Ground consolidation has become a significant issue in contemporary agriculture, driven 
by the green revolution and increased mechanization in the late 20th century. The use of heavy 
machinery in conventional tillage practices raises concerns about Ground consolidation not only 
in agricultural settings but also in pasture and woodland areas affected by activities such as animal 
trampling and cutting [6]. Understanding the characteristics of Ground consolidation is crucial for 
sustainable agriculture, directly impacting root growth, water percolation, mineral absorption, and 
overall crop productivity [7]. The assessment of Ground consolidation relies heavily on SPR 
measurements, which play a vital role in monitoring and evaluating Ground consolidation. Quality 
indicators like SPR have a significant influence on various aspects, including plant root 
development, soil erosion, agricultural production, and ecological functions [8]. To optimize 
plowing efficiency and minimize energy consumption, the evaluation of SPR is essential. 
Recognizing the importance of SPR values in sustainable agriculture is critical due to the lack of 
essential information, expertise, and standardized soil penetrometers, posing challenges for 
farmers, professionals, and researchers conducting on-site SPR tests [9]. 

Soil parameter estimators have been employed to predict soil-plant water interactions, 
incorporating variables such as bulk density, soil moisture content, matric potential, soil organic 
carbon content, microporosity, and soil texture qualities [10]. However, these Soil parameter 
estimators often lack precision across diverse soil types, organic carbon content, and regions. The 
relationship between soil moisture and SPR is inversely proportional, presenting challenges in 
comparing data acquired under different conditions due to variations in soil water content [11]. 

Researchers have proposed two techniques to mitigate the influence of soil moisture on 
SPR values: measuring SPR close to field capacity and normalizing SPR values acquired at different 
water contents [12]. However, these methods remain expensive due to the need for on-site data 
collection and subsequent laboratory analysis [13]. Soil moisture content emerges as a primary 
factor influencing SPR values, with the soil-water relationship curve affected by bulk density, soil 
texture, and physical properties [14]. This study aims to predict SPR under different conditions 
using Artificial Neural Networks (ANN). By leveraging the van Genuchten Pedotransfer Function 
for Soil-Water Retention Curves, the study aims to determine optimal soil moisture content and 
develop a Penetration Transfer Function based on measured data. These soil parameter transfer 
functions will be used to compute SPR under constant humidity conditions, and the accuracy of 
SPR predictions will be assessed using ANN models, particularly focusing on places with intensive 
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tillage practices. The study seeks to provide valuable insights into predicting SPR, improving land 
management techniques, and promoting environmental sustainability in agriculture. 
Methodology: 

The experimental study was conducted in Gujranwala, which is situated in a semi-arid/arid 
region known for Ground consolidation challenges. Gujranwala is a city located in the Punjab 
province of Pakistan. Its geographical coordinates are approximately 32.1617° N latitude and 
74.1883° E longitude. The region experiences a mean annual air temperature of 21 ◦C and annual 
precipitation of 350 mm. The soil in the 0–28 cm-layer horizon has sand particles (2000–50 µm) 
at 475 g/kg, silt (50–2 µm) at 280 g/kg, and clay (less than 2 µm) at 215 g/kg. 
Experimental Design and Crop Cultivation: 

Organic potatoes were cultivated conventionally with mold-board plowing at a maximum 
depth of 25 cm. Soil organic matter content at the site was 1.5%. 

Table 1: Experimental Design and Crop Cultivation 

Parameter Details 

Location Gujranwala, Punjab, Pakistan 
Coordinates 32.1617° N latitude, 74.1883° E longitude 
Mean Annual Air Temperature 21 °C 
Annual Precipitation 350 mm 
Soil Composition (0–28 cm) Sand: 475 g/kg, Silt: 280 g/kg, Clay: 215 g/kg 
Crop Cultivation Organic Potatoes 
Tillage Method Mold-board Plowing 
Maximum Plowing Depth 25 cm 
Soil Organic Matter Content 1.5% 

Tractor Speed and Soil Moisture Treatments: 
Tractor forward speed and soil moisture were chosen as study factors. Two tractors 

forward speeds (C1: 4.5 km/h, C2: 8.5 km/h) and three soil moisture content scenarios (H0: initial, 
H1: after 12 days, H2: after 28 days) were used in a randomized design. Each treatment was 
replicated three times. 

Table 2: Tractor Speed and Soil Moisture Treatments 

Treatment Tractor Forward Speed (km/h) Soil Moisture Content Scenario 

T1 (Control) 4.5 Initial (H0) 
T2 8.5 After 12 days (H1) 
T3 - After 28 days (H2) 

Experimental Layout: 
The Foton tractor with a total mass of 2.9 tonnes, power of 50 kW, and standard wheel 

drive was used. A completely randomized design was employed, resulting in a total of 250 field 
readings. 

Table 3: Experimental Layout 

Tractor Used Foton Tractor 

Total Mass 2.9 tonnes 
Power 50 kW 
Drive Standard Wheel Drive 

Experimental Design Completely Randomized Design 
Total Field Readings 250 

Soil Sampling and Analysis: 
Eighty-one undisturbed soil cores were collected at depths of 12, 18, and 25 cm using a 

portable soil sampler with steel cylinders. Bulk density, gravimetric water content (W), and organic 
matter content were determined. 
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Penetration Resistance Measurements: 
Penetration resistance (PR) was measured using a penetrologger to a depth of 45 cm. PR 

was measured at about 89 points, considering factors like soil water content, texture, and organic 
matter [15]. 
Artificial Neural Network (ANN) Model: 

An ANN model was developed to predict the impact of tractor speed on Ground 
consolidation. Input parameters included tractor speed, average depth, soil bulk density, and soil 
moisture content. The model underwent training, cross-validation, and testing using a dataset 
divided into 45%, 35%, and 25%, respectively. The model architecture involved modular feed-
forward networks with one hidden layer [15]. 
Model Optimization and Validation: 

The back-propagation algorithm was used for model optimization. The network 
architecture was determined by gradually increasing the number of neurons to find an optimum. 
Model validation involved assessing performance metrics like determination coefficient (R2), 
mean squared error, and mean absolute error [16]. 
Global Sensitivity Analysis: 

A sensitivity analysis was performed to determine the relative importance of input 
variables in the ANN model. Connection weights obtained from two different models with 2 
hidden nodes were considered in the analysis. This integrated methodology ensures a 
comprehensive exploration of Ground consolidation factors, encompassing experimental 
conditions, crop cultivation practices, and advanced modeling techniques [17]. 
Results and Discussion: 
Soil Characteristics' Descriptive Data: 

The study observed a significant influence of both Ground consolidation degree and 
moisture content on bulk density. Notably, the impact of tractor speed was more pronounced in 
the topsoil, indicating a lesser effect on the subsoil. Lower speeds led to increased density up to a 
depth of 0–25 cm in the topsoil, while variations in speeds beyond 25 cm did not result in 
noticeable differences. Under initial soil conditions (C0) and humidity H0, the dry bulk density 
was already 1.29, 1.39, and 1.48 g/cm³ for layers 0–10, 10–20, and 20–30 cm, respectively. 
Statistical analysis of the results confirmed a significant impact of tractor speed on soil bulk density 
(p < 0.05) at different depths and moisture levels. The increases in soil bulk density due to tractor 
speed were more pronounced at lower speeds, with a 24% increase in topsoil bulk density 
observed for C1. Generally, soil bulk density increased with depth across all treatments. 

Table 4: Soil Sampling and Analysis 

Parameter Details 

Depths Sampled 12 cm, 18 cm, 25 cm 
Soil Cores Collected 81 
Sampling Method Portable Soil Sampler with Steel Cylinders 
Analyzed Properties Bulk Density, Gravimetric Water Content, Organic Matter Content 

As soil moisture content rose, the influence of tractor speed on soil bulk density became 
more pronounced, aligning with findings in other studies. It can be inferred that tractor speed 
plays a crucial role in determining Ground consolidation. Some studies have noted a 'cumulative 
compaction effect' with increasing passage speeds. The parameters of the soil SPR model exhibit 
significant variability in their associated properties, enhancing the reliability and applicability of 
the study's conclusions across diverse scenarios. Soil samples analysis reveals varying sand 
concentrations (23% to 59%) and clay contents (27% to 47%), with a substantial coefficient of 
variation (CV) in the combination of sand and clay. Four distinct soil types clay, sandy clay, clay 
loam, and sandy clay loam—were identified using the USDA textural triangle. Table 5 shows the 
characteristics of the soil and properties of the field. 
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The study explores a satisfactory diversity in texture, aligning with neighboring soil studies 
[18]. Field capacity values at pressures of 10 kPa (FC10) and 33 kPa (FC33) were determined as 

0.183 cm³ cm⁻³ and 0.394 cm³, respectively. Aggregate stability ranged from 6.92% to 43.02%, 
and soil organic carbon showed a diversity from 0.213% to 2.298%, with a CV of 3.91%. The 
study reveals a connection between land use practices and the variation in organic carbon and 
accessible phosphorus levels. The average, maximum, and minimum values of the parameter Pb, 

essential for PTF for SPR computation, were found to be 1.03, 1.69, and 1.41 g cm⁻³, respectively. 
The observed PRs' average value was 1.79 MPa, closely approaching the 2 MPa threshold limiting 
plant development. 

Table 5: Soil Characteristics and Field Properties 

Soil Characteristic Range 

Sand Concentration 23% to 59% 
Clay Content 27% to 47% 
Soil Types Clay, Sandy Clay, Clay Loam, Sandy Clay Loam 

Field Capacity at 10 kPa 0.183 cm³ cm⁻³ 

Field Capacity at 33 kPa 0.394 cm³ cm⁻³ 
Aggregate Stability 6.92% to 43.02% 
Soil Organic Carbon 0.213% to 2.298% 
Coefficient of Variation 3.91% 

The paper presents SWRC model findings, highlighting soil moisture as the main factor 
controlling SPR in field environments as indicated in Table 6. The study analyzes alpha (α) 
coefficient variations and modifications in saturated soil moisture content (Δs) and residual soil 
moisture content (Δr), suggesting variations in soil texture. The mean values of Δs and Δr were 
found to be 0.471 and 0.89, respectively. The coefficient m, calculated using the constant (1 1/n), 
resulted in an average value of 0.199. Moisture content attributes depend on soil physical 
characteristics and contribute to variations in physical environments. 

Table 6: Soil Parameter Values and SWRC Model Findings 

Parameter Average 

Pb (g cm⁻³) 1.03 
PR Average (MPa) 1.79 
Δs (saturated) 0.471 
Δr (residual) 0.89 
Coefficient m 0.199 
Ideal Moisture Content Δopt 
SPR Values 1.51 to 2.29 MPa 

The ideal moisture content (Δopt) values were determined, with Θopt ranging from 0.21 

cm⁻³ cm⁻³ to 0.41 cm⁻³ cm⁻³. SPR values were modified for the most favorable Δ content, 
revealing a range of 1.51 to 2.29 MPa. The Pearson correlation coefficients (r) and PCA analysis 
were employed to determine the relationships among variables. Negative correlations were 
observed between SPR and silt, clay, wilting point, field capacities at 15 kPa (FC10) and 39 kPa 
(FC39), and organic carbon (OC). No correlation was found between Aggregate Stability (AS) and 
Soil Penetration Resistance (SPR). Sand, Pb, and clay were identified as the main variables affecting 
SPR. Principal Component Analysis (PCA) explained 73.89% of the variance in soil values, with 
three principal components identified sand, silt, and AS. The analysis created six scenarios for 
determining SPR, incorporating PCA-found soil factors. 

Neural networks prove valuable in predicting soil phosphorus. The study aimed to identify 
the optimal ANN by evaluating models across six distinct scenarios. Table 4 displays Mean 
Squared Error and R-squared (R2) values obtained from ANN results in various scenarios. Except 
for the scenario with exclusively clay, all situations exhibited an R2 value surpassing 0.85. 
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Analyzing the mean squared error of test values reveals variations from 0.0004 to 0.121. In four 
scenarios, the R2 value peaked, while in six cases, it reached its lowest point at 0.99. Despite a 
lower prediction rate in the presence of clay alone, adding clay to sand in the third scenario 
improved test validation accuracy compared to the scenario with only sand. Six scenarios based 
on PCA-selected attributes yielded the second-lowest result among the test data, and the AS value 
impacted the projected rate despite high R2 values for clay and sand. 

Table 7: Correlation, PCA Analysis, and Neural Network Results 

Variables Correlation 

SPR vs. Silt Negative 
SPR vs. Clay Negative 

SPR vs. Field Capacities Negative 
SPR vs. Organic Carbon Negative 

AS vs. SPR No Correlation 
Main Variables Affecting SPR Sand, Pb, Clay 
R-squared (R2) Value (ANN) 0.6289 (Clay and Sand) 

Individual analysis of 200 samples from the ANN system revealed R2 values ranging from 
0.79 to 0.91. However, the models generated produced statistical coefficients smaller than those 
in the model containing all samples when applied to validation data. Specifically, adding the Pb 
value to the estimate model improved the connection with SPR by 8% in four distinct scenarios. 
While calculations relying solely on texturing saw increased accuracy with Pb, OC, or AS addition, 
differences in test results were negligible upon thorough analysis. Comparing this study's data with 
typical findings for Pb, clay, and sand in other research is crucial for validation. Pb density ranged 

from 1.10 g cm⁻³ to 1.69 g cm⁻³, with a mean of 1.29 g cm⁻³. Clay content ranged from 15.09% 
to 81.39%, with a mean of 39.48%, and sand percentage ranged from 5.71% to 61.18%, with a 
total of 31.18%. The corresponding coefficient of variation values for Pb, clay, and sand are 
51.09%, 09.92%, and 0.19%, respectively. Verification was not conducted in every circumstance. 
The evaluation of the second scenario, including clay and sand, yielded the highest explanation 
percentage. The coefficient of determination (R2) was 0.6289, and the root mean square error was 
0.71. Despite self-generated data, a verification score of around 0.69 suggests a substantial level of 
generality. 

Table 8: Comparison with Typical Findings and Verification Scores 

Soil Characteristic Typical Range Mean Value Coefficient of Variation 

Pb Density (g cm⁻³) 1.10 to 1.69 1.29 51.09% 
Clay Content (%) 15.09% to 81.39% 39.48% 9.92% 

Sand Percentage (%) 5.71% to 61.18% 31.18% 0.19% 
R-squared (R2) Value 

(Verification) 
0.6289 (Clay and 

Sand) 
Root Mean Square 

Error: 0.71 
 

Discussion:  
Assessing Ground consolidation in agricultural settings is crucial for determining optimal 

growth conditions, understanding plant root systems, and identifying compacted layers. Soil 
Penetration Resistance is particularly significant in this regard, as it contributes to reduced fuel-
related CO2 emissions and impacts agricultural mechanization, leading to increased fuel 
consumption. However, calculating and comparing SPR values in real-world conditions is 
challenging due to factors such as cost, expertise, and, most importantly, soil moisture variations 
[19]. Numerous studies, primarily aiming to standardize moisture contents, have explored Pedo 
Transfer Functions (Soil parameter estimators) involving soil variables like moisture, Pb, Organic 
Carbon (OC), and soil texture affecting the Soil Plant Relationship. Additionally, OC exhibited 
positive and significant relationships with θs, θf, and n. Organic compounds have the potential to 
mitigate the impact of compaction force on soil, reducing SPR and bearing capacity (Pb) [20]. 
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Higher soil organic carbon (OC) levels are known to enhance water retention, decrease 
lead (Pb) levels, and promote long-lasting soil aggregates, collectively reducing Ground 
consolidation. Conversely, soil moisture, primarily influenced by soil texture and mineral 
composition, is the main factor affecting soil mechanical characteristics and compaction [21]. 
Several studies have highlighted the impact of soil moisture on the accuracy of models used to 
calculate SPR. To effectively gauge Ground consolidation, it's crucial to identify the specific root 
system zone affected by plant development, considering factors like temperature, vegetation, and 
mechanization. Standardizing moisture levels using the Soil water retention curve allows for a 
comprehensive analysis of Ground consolidation, regardless of regional variations [22].  

In highly mechanized environments where plants thrive, Ground consolidation becomes 
a serious concern. Standardizing moisture levels allows for a thorough analysis of Ground 
consolidation, ignoring regional variations. However, Soil water retention curve determination 
relies solely on soil texture (clay, silt, or sand). Similar to previous methods, Water Gravitational 
formulas were used to determine Δopt in the research. Artificial Neural Networks prove useful in 
predicting Soil Plant Available Water for specific soil textures. Associations between sand and Pb 
were identified, and studies showed that SPR is influenced by clay content. Integrating both sand 
content and ANN estimates yielded higher explanation rates than when used separately. The 
correlation between Pb and SPR was evident, and adding Pb to the texturing scenario improved 
prediction accuracy. However, obtaining soil samples from degraded areas requires professional 
knowledge and a significant amount of time. The SPR estimate based on texture proved accurate 
in our analysis, with statistical outcomes expected to show similarity when the ANN model is 
applied to alternative datasets, demonstrating a high level of precision. 
Conclusions: 

In agricultural areas with intensive tillage and field traffic, our study revealed that the 
integration of Artificial Neural Networks (ANN) with techniques focusing on soil textural 
properties yielded successful and promising results in determining Soil Penetration Resistance 
(SPR) values. This approach underscores the potential to identify locations prone to compaction 
by leveraging regional variations in soil texture properties. Consequently, employing this 
knowledge allows for the development of management strategies aimed at mitigating the adverse 
effects of Ground consolidation. Further research is necessary to refine the precision of SPR 
estimation, involving the expansion of these technologies to cover a diverse range of soil types 
and those subjected to varying management practices. Broadening the scope of the investigation 
will enhance the applicability and validation of ANN-based methods across a wider spectrum of 
agricultural settings. 
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