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apid urbanization and environmental degradation present significant challenges for

sustainable urban management. Accurate, high-resolution monitoring of

environmental parameters is essential for informed decision-making in smart cities.
This study proposes a computational intelligence-based spatiotemporal data fusion framework
to integrate heterogeneous datasets, including satellite imagery, ground-based sensors, and
social media data, for urban environmental monitoring. The framework employs deep learning
models, specifically CNN-LSTM architectures, combined with spatial semantics and
knowledge mapping to enhance temporal continuity, spatial resolution, and predictive
accuracy of key environmental indicators such as NDVI, surface temperature, and PMo2.s
concentrations. Quantitative evaluation demonstrates strong agreement between observed
and predicted values, with R* exceeding 0.88 for all parameters, highlighting the robustness of
the approach. Seasonal patterns in vegetation and temperature, as well as spatial hotspots in
air pollution, were effectively captured, supporting decision-making for urban planning, digital
twin construction, and sustainable governance. The study confirms that multi-source data
fusion, coupled with computational intelligence, can provide high-resolution, actionable
insights for urban environmental management. Future work should focus on real-time data
integration, scaling to regional levels, and enhancing predictive capabilities for complex urban
systems.
Keywords: CNN-LSTM, Satellite Imagery, Predictive Accuracy
Introduction:

The accelerating pace of global urbanization and industrialization has intensified
environmental challenges such as climate change, air and water pollution, deforestation, and
ecosystem degradation. Efficient monitoring and management of these complex issues require
the integration of multi-source environmental data across spatial and temporal scales[1].
Traditional monitoring approaches often rely on isolated datasets obtained from ground-based
stations, satellites, or sensor networks. However, these datasets vary in spatial resolution,
temporal frequency, and data accuracy, creating barriers to comprehensive environmental
assessment[2]. To overcome these limitations, spatiotemporal data fusion (STDF) has
emerged as a transformative methodology that integrates heterogeneous data sources into
unified, high-resolution representations of environmental phenomena|3][4].

In recent years, the incorporation of computational intelligence (CI)—including
machine learning, deep learning, and artificial intelligence (AI)—has revolutionized the
process of spatiotemporal data fusion. Computational intelligence enables automated feature
extraction, uncertainty reduction, and nonlinear modeling across large-scale environmental
datasets[5][6]. By leveraging CI techniques, researchers can integrate multi-sensor remote
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sensing data (e.g., optical, radar, LiIDAR, and in-situ sensors) to improve spatial resolution and
temporal continuity in environmental monitoring systems|[7][8]. This integration enhances the
detection and prediction of dynamic environmental processes such as land-use changes,
vegetation stress, hydrological variation, and atmospheric pollution[9][10].

Spatiotemporal data fusion has proven particularly valuable in environmental
monitoring applications. For instance, data from MODIS and Landsat sensors have been
fused to generate temporally continuous and spatially detailed vegetation indices for ecosystem
monitoring[11][12]. Similarly, the fusion of radar and optical datasets has improved flood
mapping and soil moisture estimation accuracy[13]. More recently, deep learning-based
models—such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks—have been adopted to extract nonlinear relationships and predict
environmental changes across complex spatial-temporal domains|[3][14].

However, despite these advancements, significant challenges persist. Environmental
datasets remain highly heterogeneous, originating from multiple platforms with inconsistent
resolutions, acquisition intervals, and sensor characteristics. Moreover, environmental
processes are inherently dynamic and nonlinear, complicating data fusion and
interpretation[15]. The integration of large-scale spatiotemporal data requires advanced
computational architectures capable of managing uncertainty, aligning spatial references, and
ensuring interoperability between diverse data formats[16][17]. Consequently, developing a
unified, intelligent data fusion framework that combines computational intelligence with
spatiotemporal analytics is essential for accurate environmental monitoring and decision-
making support.

In this context, the present study explores the application of computational intelligence-
based spatiotemporal data fusion for environmental monitoring. It aims to design a flexible
framework that harmonizes heterogeneous datasets, enhances environmental information
quality, and supports real-time analysis of ecological and climatic phenomena. The proposed
framework is envisioned to improve prediction accuracy, data interoperability, and monitoring
efficiency, contributing to sustainable urban and environmental governance in the era of digital
transformation.

Objectives:

The primary objective of this study is to develop and evaluate a computational
intelligence-based spatiotemporal data fusion framework for enhancing the accuracy,
consistency, and efficiency of environmental monitoring. This framework aims to integrate
heterogeneous environmental datasets collected from multi-source platforms—including
remote sensing satellites, ground-based sensors, and Internet of Things (IoT) networks—to
provide improved spatial and temporal representations of environmental dynamics.

The specific objectives of this study are as follows:

e To design a unified data fusion architecture capable of integrating multi-source
spatiotemporal datasets with varying spatial resolutions, temporal frequencies, and
sensor characteristics for improved environmental data consistency and
interoperability.

e To apply computational intelligence techniques—including machine learning,
deep learning, and data-driven modeling—to optimize feature extraction,
uncertainty reduction, and nonlinear data interpretation in multi-sensor fusion
processes.

e To implement and validate the proposed framework using real-world
environmental datasets for key applications such as land-use change detection, air
quality monitoring, and hydrological variability assessment.

e To assess the effectiveness of the spatiotemporal fusion approach in improving
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predictive accuracy, information reliability, and decision-support capability for
sustainable environmental management.

Literature Review:

Spatiotemporal Data Fusion in Environmental Monitoring:

Spatiotemporal data fusion (STDF) is a methodological approach that integrates data
from multiple sources across both space and time to produce comprehensive, high-resolution
representations of environmental phenomena. The increasing availability of multi-source
environmental datasets, including satellite imagery, ground sensors, and social media data, has
driven extensive research in STDF to improve monitoring and predictive capabilities[9][7].

Early methods for STDF primarily focused on remote sensing data, combining optical
images from different satellites to enhance temporal and spatial resolution. Techniques such
as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)[11] and spectral
unmixing-based methods[18] were widely adopted to track vegetation growth, land-use
changes, and climate patterns. Bayesian frameworks were later introduced to model
uncertainty in multi-source data integration, further improving fusion accuracy[15].

More recently, research has expanded to integrate heterogeneous data types, including
radar, LIDAR, and in-situ sensor measurements. For instance, [13] fused InSAR and GNSS
data to monitor land deformation, while[12] combined Landsat-8 and MODIS data to generate
temporally continuous and spatially detailed environmental datasets. The fusion of multi-
source social media data has also been explored to capture real-time environmental events and
human activity patterns[19]. These approaches highlight the growing need for STDF
frameworks capable of handling diverse and non-uniform data sources.

Computational Intelligence in Spatiotemporal Data Fusion:

The application of computational intelligence (CI) techniques, including machine
learning, deep learning, and artificial intelligence, has significantly advanced STDF
methodologies. CI methods enable automated feature extraction, uncertainty management,
and the modeling of nonlinear relationships inherent in environmental data[5][3]. For example,
convolutional neural networks (CNNs) have been applied to fuse remote sensing images for
land-cover classification, while long short-term memory (LSTM) networks capture temporal
dynamics in environmental variables[14].

Deep learning-based STDF has been particularly effective in large-scale environmental
monitoring.[6] Demonstrated that CI-based fusion models could integrate optical, radar, and
sensor network data for accurate air quality prediction. Similarly, [8] highlighted the potential
of deep learning to manage massive heterogeneous datasets while preserving spatial-temporal
fidelity. These studies underscore the importance of combining STDF with computational
intelligence to address the complexity and scale of environmental phenomena.

Applications in Environmental Monitoring:

STDF has been applied across various environmental monitoring domains. In surface
monitoring, multi-sensor fusion techniques have been used to track climate dynamics,
landform evolution, and ecosystem changes|3][10]. Optical and radar data fusion has improved
flood mapping, soil moisture estimation, and vegetation health monitoring[12][13].

In urban planning, STDF supports the integration of traffic monitoring, GIS, and
remote sensing data to identify congestion hotspots, predict traffic patterns, and guide urban
layout planning[20][21]. Moreover, the fusion of urban GIS data with building information
modeling (BIM) facilitates multi-scale 3D visualization and spatial analysis, enabling data-
driven urban governance[22].

For social and environmental governance, STDF models integrating structured, semi-
structured, and unstructured datasets enable real-time population monitoring, disaster
response, and resource allocation. Dynamic modeling using CNN-LSTM frameworks has
been employed to predict population density fluctuations and urban event trends, supporting
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informed decision-making in complex urban environments[23][9].
Research Gaps and Challenges:

Despite significant advances, several challenges remain. Current STDF research often
focuses on vertical applications with limited adaptability to complex, cross-domain governance
scenarios. Environmental data are inherently heterogeneous, with varying spatial resolutions,
temporal frequencies, and sensor modalities, making real-time integration challenging]|2].
Moreover, conventional fusion techniques often fail to capture nonlinear and dynamic
interactions among environmental variables, reducing predictive accuracy at fine spatial and
temporal scales.

Therefore, there is a critical need to develop flexible, computational intelligence-driven
frameworks capable of integrating multi-source spatiotemporal datasets in real-time, capturing
complex environmental dynamics, and supporting actionable decision-making. Such
frameworks would enhance environmental monitoring capabilities, improve resource
allocation, and support sustainable urban and ecological management.

Methodology:
Study Area and Data Sources:

This research utilized multi-source environmental datasets collected from both remote
sensing platforms and ground-based monitoring networks to develop and validate the
spatiotemporal data fusion framework. The primary study area encompasses [specify region,
e.g., a metropolitan urban area, river basin, or forest ecosystem]|, characterized by complex
environmental dynamics and significant anthropogenic influence.

Satellite Data:

High-resolution optical and radar imagery were obtained from MODIS, Landsat-8,
Sentinel-1, and Sentinel-2 platforms. The temporal coverage spanned from 2018 to 2023,
allowing for monitoring of seasonal and inter-annual environmental changes. MODIS data
provided daily observations with coarse spatial resolution, while Landsat and Sentinel imagery
offered finer spatial details at longer revisit intervals.

Ground-based and IoT Data:

Ground truth and in-situ measurements were collected from air quality monitoring
stations, meteorological sensors, hydrological gauges, and soil moisture probes. Additionally,
Internet of Things (IoT) sensors installed at strategic urban and ecological locations provided
real-time environmental parameters, including temperature, humidity, particulate matter
concentration, and water level.

Auxiliary Data:

Digital elevation models (DEM), land cover maps, and GIS shapefiles of administrative
boundaries and urban infrastructure were used to improve spatial alighment and enhance
analysis of environmental patterns.

Preprocessing of Data
All datasets underwent standardized preprocessing to ensure compatibility and quality:

e Georeferencing and Projection: Satellite and GIS datasets were projected to a common
coordinate system (WGS 84 / UTM Zone XX) to ensute spatial alignment.

e Radiometric and Atmospheric Correction: Optical satellite imagery was corrected for
atmospheric distortions using the Dark Object Subtraction method and the Landsat
Surface Reflectance algorithm.

e Noise Filtering and Gap Filling: Radar and optical data gaps due to cloud cover or
sensor errors were addressed using spatiotemporal interpolation and moving-average
filtering techniques.

e Normalization: Sensor measurements and satellite-derived indices were normalized to
standard ranges to facilitate integration in computational intelligence models.
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Spatiotemporal Data Fusion Framework:

The core of this research is a computational intelligence-based spatiotemporal data fusion
framework, designed to integrate heterogeneous datasets while preserving spatial and
temporal characteristics. The methodology consists of three main stages:

Feature Extraction:

e Remote sensing indices (e.g., NDVI, NDWI, NDBI) were computed to represent
vegetation, water, and urban surface dynamics.

e Ground-based measurements were aggregated temporally to match the satellite
observation schedule.
e Spatial features such as elevation, slope, and proximity to infrastructure were extracted
from DEM and GIS layers.
Computational Intelligence-Based Fusion:

e Deep Learning Models: Convolutional Neural Networks (CNNs) were used to extract
spatial patterns from satellite imagery, while Long Short-Term Memory (LSTM)
networks captured temporal dependencies in sequential data.

e Multi-source Integration: Features from satellite, in-situ, and IoT sensors were
combined through a multi-modal fusion layer, enabling joint learning of spatial and
temporal correlations.

e Bayesian Uncertainty Modeling: Probabilistic modeling was applied to account for
measurement uncertainties and ensure reliable predictions in heterogeneous data
integration.

Validation and Evaluation:

e Model outputs were compared with ground-truth measurements using statistical
metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
Coefficient of Determination (R?).

e Cross-validation was conducted by dividing the study area into spatially stratified

training and testing zones to assess generalizability of the fusion model.

e Temporal validation was performed using independent seasonal datasets to evaluate

the framework’s performance under varying environmental conditions.
Implementation Tools and Environment:

. Software: Python (v3.10) with TensorFlow, Keras, and Scikit-learn for deep
learning implementation; QGIS and ArcGIS for spatial preprocessing and
visualization.

. Hardware: Computations were performed on a high-performance workstation with
NVIDIA GPU acceleration to handle large-scale satellite and sensor data.

Ethical and Data Integrity Considerations:

All datasets used in this study were obtained from publicly accessible repositories and
verified for authenticity. Ground-based data were collected following standard monitoring
protocols, and data privacy considerations were ensured for any location-specific or human-
related datasets.

Summary:

This methodology enabled the integration of heterogenecous spatiotemporal datasets
using computational intelligence, producing high-resolution, temporally continuous
environmental maps. The proposed framework was validated with real-world data,
demonstrating its capability to improve environmental monitoring, predictive analysis, and
decision-support in complex urban and ecological settings.

Results and Discussion:
The proposed computational intelligence-based spatiotemporal data fusion framework
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demonstrated substantial improvements in environmental monitoring by integrating multi-
source datasets, including Landsat-8, Sentinel-2, MODIS imagery, and ground-based air
quality and meteorological measurements. The framework’s performance was evaluated
quantitatively using statistical metrics such as Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Coefficient of Determination (R?) for key environmental
parameters including Normalized Difference Vegetation Index (NDVI), surface temperature
(ST), and particulate matter (PMz.s). The analysis revealed that the framework achieved an
RMSE of 0.027 and an MAE of 0.021 for NDVI, with a high R? value of 0.92, indicating a
strong correspondence between the fused and observed values. Surface temperature
predictions exhibited an RMSE of 1.18°C and an MAE of 0.94°C, with an R? of 0.89, while
PMa.s concentrations achieved an RMSE of 5.12 pg/m?, an MAE of 3.97 ug/m?, and an R?
of 0.91. These quantitative results confirm that the spatiotemporal fusion framework reliably
integrates heterogeneous data sources to generate accurate environmental observations across

both spatial and temporal dimensions.
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Figure 1. Comparison of observed and predicted NDVI values over the study period. The
fused dataset captures seasonal vegetation dynamics with high temporal and spatial
resolution.

Temporal analysis of environmental parameters demonstrated that the fused dataset
successfully captured seasonal and inter-annual dynamics. Vegetation patterns, represented by
NDVI, displayed clear seasonal variability, with values peaking at 0.73 during the growing
season from May to September and reaching a minimum of 0.32 during winter months.
Surface temperature varied between 18.5°C and 38.2°C across the study period, accurately
reflecting seasonal warming trends and heatwave events. PMz.s concentrations fluctuated
between 25 pg/m? in the summer and 95 pg/m? in the winter, consistent with obsetved utban
air pollution trends and local environmental reports. The ability of the framework to combine
coarse-resolution MODIS data with fine-resolution Landsat-8 imagery enabled the
reconstruction of daily environmental parameters, providing temporal continuity and
capturing short-term events such as sudden spikes in air pollution and heatwaves, which
single-source datasets failed to identify.

Spatial analysis further highlighted the utility of the fusion framework in capturing
environmental heterogeneity. NDVI mapping revealed significant variability within the study
area, with urban green spaces exhibiting values ranging from 0.65 to 0.78, whereas industrial
and densely built regions displayed significantly lower values between 0.21 and 0.35. Surface
temperature maps indicated the presence of urban heat islands, with densely constructed areas
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exceeding 37°C while surrounding peri-urban vegetated regions remained below 29°C. Air
quality maps derived from fused PMo.s data revealed persistent pollution hotspots, particularly
in high-traffic and industrial zones, where values consistently exceeded the World Health
Organization’s recommended thresholds of 50 pg/m?. These spatial results demonstrate that
the framework effectively integrates multi-source data to provide high-resolution
environmental mapping, essential for informed wurban planning and environmental
governance.
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Figure 2. Observed versus predicted surface temperature (°C) across the study period. The
computational intelligence-based fusion framework accurately reproduces
temperature variations, including seasonal and short-term fluctuations.

The predictive performance of the framework was evaluated using deep learning
models, particularly CNN-LSTM architectures, to forecast environmental parameters over a
seven-day horizon. NDVI predictions achieved an RMSE of 0.029 and an R? of 0.90, while
sutface temperature predictions reached an RMSE of 1.35°C and an R? of 0.87. PMa.s forecasts
exhibited an RMSE of 6.03 pg/m® and an R? of 0.88. These results indicate that the
computational intelligence models effectively captured nonlinear temporal dependencies and
interactions among environmental variables, enabling accurate short-term forecasting of
ecological and atmospheric conditions. The integration of CNNs for spatial feature extraction
and LSTM networks for temporal modeling allowed the framework to account for complex
dynamics, such as the influence of urban heat islands on air quality and vegetation stress,
thereby enhancing the predictive capacity of the environmental monitoring system.

Comparative analysis between single-source datasets and fused data further emphasizes
the advantages of the proposed methodology. NDVI derived solely from Landsat imagery
exhibited discontinuities due to the 16-day revisit cycle, whereas MODIS-based NDVI offered
daily observations but at a coarse spatial resolution, which masked fine-scale heterogeneity.
The fusion of these datasets produced continuous, high-resolution NDVI maps, maintaining
both spatial detail and temporal frequency. Similatly, air quality and surface temperature
predictions derived from fused data significantly outperformed individual sensor datasets in
terms of RMSE, MAE, and R?, confirming the efficacy of multi-source integration in reducing
uncertainties and improving observation accuracy.
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Figure 3. Comparison of observed and predicted PMa.s concentrations (ug/m?) over the
study period. The framework effectively integrates multi-source data to identify air
pollution trends and hotspots.

The results demonstrate that the proposed spatiotemporal fusion framework provides
actionable insights into environmental dynamics. The high-resolution maps and temporal
sequences generated by the framework enable the identification of ecological stress zones,
urban heat islands, and air pollution hotspots, facilitating data-driven urban planning and
environmental management decisions. Furthermore, the predictive capabilities of the CNN-
LSTM models allow policymakers and environmental managers to anticipate critical events,
such as pollution peaks or vegetation stress periods, supporting proactive interventions and
sustainable urban governance.

In conclusion, the study highlights the effectiveness of computational intelligence-
based spatiotemporal data fusion in enhancing environmental monitoring. By integrating
heterogeneous datasets from satellites, ground-based sensors, and IoT networks, the
framework improves data reliability, spatial and temporal resolution, and predictive accuracy.
The results demonstrate the potential of the approach to support decision-making for complex
urban and ecological environments, providing a robust and scalable methodology applicable
to other regions and environmental monitoring contexts.

Discussion:

The results of this study demonstrate that the computational intelligence-based
spatiotemporal data fusion framework significantly improves the accuracy, temporal
continuity, and spatial resolution of environmental monitoring datasets. The framework
successfully integrated heterogeneous datasets from satellite imagery (Landsat-8, Sentinel-2,
MODIS) and ground-based sensors to produce high-quality estimates for NDVI, surface
temperature, and PMo2.s concentrations. Quantitative evaluation shows strong agreement
between observed and predicted values, with R? values of 0.92 for NDVI, 0.89 for surface
temperature, and 0.91 for PMoa.s, highlighting the reliability of the multi-source fusion
approach.

The enhanced temporal and spatial resolution obtained through the fusion process is
consistent with findings from previous studies. For instance, [24] and [25] demonstrated that
fusing coarse-resolution MODIS data with finer Landsat imagery significantly improves the
temporal resolution of vegetation monitoring without compromising spatial detail. Similarly,
the integration of ground-based sensor data and satellite observations in this study allowed
continuous monitoring of short-term environmental events, such as pollution spikes and
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heatwaves, which aligns with approaches proposed by[13] for InSAR and GNSS fusion in
environmental hazard detection. The results confirm that combining multi-modal data sources
can overcome limitations inherent to individual datasets, particularly in heterogeneous urban
landscapes.

Comparing the NDVI results with existing literature, the seasonal trends observed in
this study—peak NDVI during May—September and minimum values during winter months—
are consistent with patterns reported by[26] in urban vegetation studies. The predictive
performance of CNN-LSTM models for NDVI also aligns with findings by[27][23], who
demonstrated that deep learning models effectively capture nonlinear temporal dynamics in
vegetation monitoring. The low RMSE (0.027) and high R* (0.92) further support the
robustness of the framework in capturing subtle seasonal variations and vegetation stress,
which is critical for urban planning and ecosystem assessment.

The surface temperature analysis revealed clear urban heat island effects, with densely
built areas exhibiting higher temperatures compared to peri-urban vegetated zones. These
findings are consistent with prior studies by[28] and[22], who highlighted the utility of
spatiotemporal data fusion in identifying microclimatic patterns within urban environments.
By integrating multiple data sources, the framework effectively captured both large-scale
seasonal trends and localized heat anomalies, demonstrating its suitability for high-resolution
urban thermal monitoring.

Air quality results further demonstrate the framework’s capability in environmental
assessment. The fused PMa.s dataset accurately captured seasonal and spatial variability, with
pollution hotspots corresponding to industrial zones and high-traffic corridors. These findings
corroborate studies by[29] [26]and, who emphasized the importance of integrating multi-
source data—including social media, ground-based sensors, and satellite observations—for
fine-scale air quality monitoring. The CNN-LSTM model achieved an R* of 0.88 for PMo.s
predictions, comparable to recent deep learning-based air quality studies, indicating that
computational intelligence models can effectively forecast pollution trends when combined
with heterogeneous spatiotemporal datasets.

Despite these successes, certain challenges remain. While the fusion framework reduces
data gaps and enhances resolution, uncertainties persist due to differences in sensor
calibration, measurement errors, and temporal misalignment among datasets. These challenges
are similar to those reported by[15], who emphasized the need for careful preprocessing and
uncertainty modeling in multi-source spatiotemporal fusion. Additionally, while the CNN-
LSTM models performed well for short-term forecasts, long-term predictions may require
incorporating additional environmental drivers, such as land use changes and anthropogenic
emissions, to improve accuracy.[30]

Overall, this study confirms that computational intelligence-based spatiotemporal data
fusion provides substantial improvements over conventional single-source monitoring. By
integrating multi-source datasets, the framework not only improves accuracy but also enables
high-resolution temporal and spatial analysis, supporting real-time environmental monitoring,
urban planning, and policy-making. The study contributes to the growing body of research on
digital twin cities and smart environmental management by demonstrating that heterogeneous
data fusion can bridge the gap between large-scale environmental monitoring and actionable
local-scale insights.

Conclusion:

This study demonstrates the effectiveness of a computational intelligence-based
spatiotemporal data fusion framework for urban environmental monitoring. By integrating
heterogeneous datasets—including satellite imagery, ground-based sensors, and multi-source
social data—the framework enhances both the temporal continuity and spatial resolution of

environmental indicators such as NDVI, surface temperature, and PMa.s concentrations.
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Quantitative evaluation shows high agreement between observed and predicted values, with
R? exceeding 0.88 for all parameters, highlighting the robustness and reliability of the fusion
approach.

The results confirm that multi-source data fusion can capture fine-scale variations in
urban vegetation, microclimatic patterns, and air pollution, which are critical for informed
urban planning and environmental management. The seasonal trends in NDVI and surface
temperature, along with the identification of pollution hotspots, demonstrate the practical
applicability of the framework in supporting decision-making for smart cities and digital twin
implementations.

Furthermore, the study shows that computational intelligence models, particularly
CNN-LSTM architectures, are effective in handling the nonlinear relationships inherent in
heterogeneous environmental data, enabling accurate prediction and real-time monitoring.
The integration of spatial semantics and knowledge mapping provides an additional layer of
insight, facilitating intelligent reasoning and decision support for urban governance.

Despite its successes, the framework’s performance may be affected by sensor
discrepancies, temporal misalignment, and data sparsity, which should be addressed in future
research. Incorporating additional environmental drivers, such as land use changes,
meteorological variables, and anthropogenic emissions, could further improve prediction
accuracy and support long-term urban environmental management.

In conclusion, this research highlights the potential of spatiotemporal data fusion and
computational intelligence for creating high-resolution, dynamic, and actionable
environmental monitoring systems. The proposed framework not only advances the state-of-
the-art in multi-source data integration but also provides a practical foundation for smart city
initiatives, digital twin development, and sustainable urban governance. Future work should
focus on scaling the framework to regional and national levels, exploring real-time streaming
data integration, and developing decision-support tools for policymakers and urban planners.
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