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environmental management, infrastructure optimization, and data-driven decision-

making. This study presents an integrated framework that combines Spatial Knowledge
Graphs (SKGs) with Artificial Intelligence (Al) and remote sensing technologies to enhance
urban intelligence and smart city analytics. Using authentic datasets derived from Sentinel-2
imagery, OpenStreetMap, and real-time IoT sensor data, the research models spatiotemporal
relationships among critical urban parameters such as land use, air quality, and traffic density.
The developed SKG framework enables dynamic querying, semantic reasoning, and predictive
modeling through Graph Neural Networks (GNNs) and spatial embeddings. Quantitative
analyses reveal strong correlations between urban density, transportation networks, and
pollution intensity, demonstrating superior predictive accuracy over traditional GIS-based
approaches. The findings confirm that the integration of SKGs and Al supports advanced
spatial reasoning, enabling adaptive and sustainable urban planning. This study contributes to
the evolving discourse on smart city intelligence by establishing a scalable, data-driven
framework for urban analytics, with implications for climate resilience, infrastructure
management, and real-time decision support systems.

Keywords: Spatial Knowledge Graphs (SKGs), Artificial Intelligence (AI), Remote Sensing,
Smart cities, Urban Intelligence
Introduction:

Rapid urbanization and the proliferation of digital technologies have transformed cities
into complex, data-rich ecosystems. Contemporary urban environments generate vast volumes
of heterogeneous spatial and temporal data through sensors, Internet of Things (IoT) devices,
remote sensing platforms, social media, and open government datasets [1][2]. Effectively
managing and interpreting this diverse information landscape is crucial for improving city
governance, infrastructure management, sustainability, and citizen well-being—key goals
within the smart city paradigm [3][4].

Traditional geospatial databases and urban analytics systems, while effective in certain
contexts, often struggle to integrate multi-source, dynamic, and semantically rich data. In
response, Spatial Knowledge Graphs (SKGs) have emerged as a powerful tool for
representing, linking, and reasoning about urban data. Knowledge graphs (KGs) structure
information as interconnected entities and relationships, enabling semantic interoperability
and advanced reasoning [5]. When enriched with spatial and temporal dimensions, SKGs can

The rapid urbanization of modern cities has intensified challenges related to
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capture geographic relationships such as proximity, containment, and topological connectivity,
thereby facilitating more intelligent urban analytics [6].

Spatial Knowledge Graphs have demonstrated significant potential in supporting
urban intelligence—the capacity of cities to analyze, learn from, and respond to complex
patterns in their spatial data. For instance, the Unified Urban Knowledge Graph (UUKG)
proposed by [7] integrates heterogeneous data sources to enhance spatio-temporal prediction
tasks, such as traffic flow and energy consumption forecasting. Similarly, [8] developed a
semantic city knowledge graph that supports the automatic generation of urban mobility
indicators and dashboards. These applications highlight the potential of SKGs to unify
fragmented urban datasets and enable intelligent decision-making in real time.

However, challenges persist in constructing and maintaining SKGs for smart cities.
Issues include semantic heterogeneity, incomplete or noisy spatial data, real-time data fusion,
and the high computational cost of graph reasoning [9]. Additionally, embedding dynamic
spatial relations and ensuring the usability of graph-based analytics for policymakers and urban
planners remain active areas of research. Overcoming these limitations is critical to fully
realizing the potential of SKGs in driving sustainable, data-driven urban transformation.
Objectives:

The primary aim of this study is to explore the development and application of Spatial
Knowledge Graphs (SKGs) for enhancing urban intelligence and smart city analytics.

Specific objectives include:

e To review the theoretical foundations and emerging methodologies for constructing
spatial knowledge graphs in the context of urban systems.

e To analyze the role of SKGs in integrating multi-source urban data, including spatial,
temporal, and semantic dimensions.

e To evaluate how SKGs contribute to intelligent decision-making processes in smart
cities, particularly for urban planning, infrastructure monitoring, and environmental
management.

e To identify current challenges and propose a conceptual framework for scalable,
interoperable, and semantically rich SKG development for urban analytics.

Literature Review:

Knowledge graphs (KGs) have become a fundamental framework for representing
and integrating complex, heterogeneous data across domains. By structuring information as
nodes (entities) and edges (relations), KGs enable semantic reasoning, interoperability, and
knowledge discovery in systems that rely on interconnected data [10]. When enriched with
spatial and temporal dimensions, these graphs evolve into spatial knowledge graphs (SKGs),
capable of modeling geographic context, topological relationships, and spatial hierarchies
essential for urban analysis. Such advancements are particularly vital in the era of smart cities,
where data are continuously generated through sensors, satellites, and Internet of Things (IoT)
devices [11].

The integration of spatial semantics into knowledge graphs builds upon long-standing
theories of geographic representation, such as qualitative spatial reasoning and topological
models like the DE-9IM framework. These theories underpin standards like the Open
Geospatial Consortium’s (OGC) GeoSPARQL, which provides a structured vocabulary and
query language for representing and analyzing spatial relationships within RDF data [12].
GeoSPARQL has become a cornerstone in ensuring interoperability between spatial
databases, linked data, and semantic web technologies, enabling seamless integration of
geospatial information across platforms [13].

In urban contexts, SKGs facilitate the unification of disparate data sources—
administrative boundaries, transportation networks, land-use data, and environmental
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sensors—into coherent, queryable structures. [7] introduced the Unified Urban Knowledge
Graph (UUKG), which integrates multiple urban data sources from major metropolitan areas
to improve spatiotemporal prediction tasks. Their research demonstrated that embedding
urban KGs into predictive models enhances accuracy in tasks such as traffic flow forecasting
and demand prediction. Similarly, [8] proposed a “city as a knowledge graph” framework,
where urban indicators are automatically extracted and organized to support real-time
decision-making for mobility and infrastructure management. These studies highlight the
transformative role of SKGs in bridging semantic, spatial, and temporal data to support
complex urban analytics.

Ontology-driven design is another critical aspect of SKG construction. Ontologies
serve as the backbone for defining urban entities—such as roads, buildings, and public
facilities—and their interrelationships. [6] proposed a spatial knowledge graph framework for
urban digital twins, integrating semantic city models and sensor data to represent real-time
urban conditions. Their approach demonstrated how SKGs can act as the semantic layer of a
digital twin, enabling not only monitoring but also predictive simulation of city-scale processes.
Such models are instrumental in supporting smart governance, infrastructure planning, and
environmental management by offering a unified representation of urban systems [10].

From a computational perspective, recent research has shifted toward learning-based
methods that combine SKGs with machine learning. Graph embedding techniques such as
TransE, ComplEx, and RotatE have been employed to convert relational structures into
numerical representations suitable for predictive analytics. In the UUKG framework,
embedding-based models were fused with spatio-temporal neural networks to capture both
relational dependencies and dynamic patterns in urban data [14][7] further advanced this
approach by proposing Spatio-Temporal Dynamic Graph Relation Learning (STDGRL),
which integrates evolving spatial and temporal relations to improve metro flow prediction.
These neural approaches represent a convergence between symbolic reasoning and data-
driven learning, reflecting a broader movement toward hybrid models that blend semantic
interpretability with predictive power [15].

Beyond transportation, SKGs have shown promise in diverse smart city applications.
In energy systems, they have been used to link buildings, energy meters, and weather data to
support energy-efficient design and monitoring [16]. In environmental monitoring, integrating
remote sensing data, IoT-based pollution sensors, and administrative boundaries within SKGs
has enabled fine-grained air quality and flood risk assessment. These examples underscore
SKGs’ potential as an integrative backbone for urban intelligence—transforming fragmented
data streams into actionable insights that enhance sustainability and resilience.

Despite their benefits, several challenges persist in implementing SKGs at scale.
Semantic heterogeneity remains a key obstacle, as data sources vary in ontology, granularity,
and structure. Aligning these ontologies across domains often requires manual intervention or
complex schema-matching algorithms. Scalability and real-time updating present additional
hurdles, especially when handling massive IoT-generated datasets. Current GeoSPARQL-
based frameworks provide limited support for temporal querying, making it difficult to
represent and reason about dynamic events. Moreover, as SKGs increasingly integrate
sensitive data—such as individual mobility traces and sensor readings—privacy, ethical
governance, and explainability become critical concerns.

Overall, the literature reflects growing consensus that spatial knowledge graphs
represent a pivotal advancement for smart city analytics. They unify semantic richness, spatial
reasoning, and data-driven learning into a single paradigm capable of addressing urban
complexity. However, to realize their full potential, future research must focus on developing
scalable architectures, standardized urban ontologies, and privacy-preserving frameworks.
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These developments will ensure that SKGs evolve from experimental systems into robust
infrastructures for real-world urban intelligence.

Methodology:

Research Design:

This study employed a mixed-method computational framework combining spatial
data integration, semantic modeling, and machine learning to construct and evaluate a Spatial
Knowledge Graph (SKG) for urban intelligence. The methodological design followed three
main stages: (1) acquisition and preprocessing of heterogeneous urban datasets, (2)
construction of a unified SKG integrating semantic, spatial, and temporal dimensions, and (3)
development and evaluation of machine learning models for urban analytics tasks such as
traffic prediction, land-use classification, and environmental monitoring. The workflow was
implemented using Python 3.10, Neo4j, RDFLib, GeoSPARQL, and PyTorch Geometric for
graph-based learning.

Study Area and Data Sources:

The research focused on Karachi, Pakistan, one of South Asia’s fastest-growing
megacities, characterized by diverse land-use patterns, high traffic congestion, and
environmental variability. Karachi was selected due to its rich data availability and relevance
for smart city applications.

Authentic datasets from multiple sources were used to ensure data reliability and
heterogeneity. These included:

Remote sensing data from Sentinel-2 MSI (10-20 m resolution) and Landsat 8
OLI/TIRS (30 m resolution) acquired from the USGS Earth Explorer for the years 2018—
2023, used to extract land-use/land-cover (LULC) and urban growth indicators.
Administrative and infrastructure data from the Pakistan Bureau of Statistics (PBS) and
OpenStreetMap (OSM), which provided shapefiles of roads, residential areas, hospitals,
schools, and green spaces. Socio-economic and environmental data from the Pakistan
Environmental Protection Agency (Pak-EPA) and World Bank Open Data, including air
quality (PMz.5, NOg2, SO3), population density, and income-level indicators.

Traffic and mobility data from the Karachi Metropolitan Corporation (KMC) and Google
Traffic API, containing real-time and historical vehicle density and flow rates.

All datasets were projected into the WGS84 coordinate reference system and
temporally harmonized for the 2018-2023 period to enable consistent integration.
Data Preprocessing:

Spatial preprocessing was conducted in ArcGIS Pro 3.1 and Google Earth Engine
(GEE) to ensure spatial and temporal alignment. Noise removal and atmospheric correction
were applied using the Sen2Cor processor for Sentinel-2 data and LEDAPS for Landsat
imagery [17]. Land-use classification was performed using the Random Forest (RF) algorithm
in GEE with 500 training samples per class, achieving an overall accuracy of 92.6%. Classified
maps were exported as GeoTIFF files for spatial linking with other data layers.

All vector and raster datasets were converted into RDF triples following the
GeoSPARQL 1.1 standard [12]. Spatial relationships such as within, intersects, adjacentTo,
and overlaps were generated using PostGIS topology functions. Attribute data (e.g., traffic
flow, population, pollution levels) were normalized using min—max scaling to ensure
consistent magnitude across graph entities.

Construction of the Spatial Knowledge Graph:

The unified SKG was implemented in a Neo4j 5.0 graph database with ontology
modeling based on the Urban Data Ontology (UDO) and CityGML standards [18]. Entities
included RoadSegment, Building, SensorStation, LandParcel, PopulationZone, and
PollutionNode, while relationships represented both semantic and spatial connections, such
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as connectedTo, contains, adjacentTo, and affects. Temporal edges were introduced to
represent dynamic events, including traffic variations and pollution fluctuations.

Each data record was transformed into a triple form of (subject—predicate—object)
using the RDFLib Python package, resulting in approximately 3.2 million triples. Example
relations included:
<LandParcel 122> <contains> <Building 224>
<SensorStation_13> <records> <PM2.5 2022 08>
<RoadSegment_57> <adjacentTo> <GreenArea_03>

To enhance interoperability, all entities were aligned with international vocabularies
such as GeoNames and Wikidata identifiers.

Knowledge Graph Embedding and Machine Learning Integration:

To analyze spatial and semantic correlations, the SKG was embedded into a low-
dimensional vector space using the TransE, RotatE, and ComplEx algorithms [19][20].
Embedding dimensions were optimized at 200, with a learning rate of 0.01 and margin value
of 1.0. The embedding models were trained for 500 epochs using the Adam optimizer.

The embedded features were integrated with spatio-temporal data to predict urban
indicators. For instance, Graph Convolutional Networks (GCNs) and Spatio-Temporal Graph
Neural Networks (STGNNs) were applied to forecast daily traffic congestion and air quality
variation [21]. Performance was evaluated using Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and R* metrics, achieving RMSE = 2.81 and R* = 0.93 for traffic flow
prediction, outperforming baseline models without SKG embeddings by 11.5%.

Validation and Evaluation:

Validation was conducted through both quantitative and qualitative methods. For
spatial accuracy, the SKG outputs (e.g., inferred pollution hotspots, predicted congestion
clusters) were compared with reference datasets from Pak-EPA and Google Mobility Reports.
Semantic consistency was validated through SPARQL query testing using 250 manually
verified spatial relations, resulting in 96.4% query accuracy.

Additionally, domain experts from KMC and Pak-EPA were consulted to evaluate the
interpretability of SKG-driven insights. Their feedback confirmed that the integrated model
enhanced data transparency, improved query efficiency, and provided a robust foundation for
decision-making in urban planning.

Ethical Considerations:

All datasets used in this study were publicly available and did not contain personally
identifiable information. Traffic and sensor data were anonymized and aggregated at the zonal
level to ensure privacy compliance. Ethical approval was obtained from the Departmental
Research Committee at the University of Karachi in accordance with national research ethics
guidelines.

Results:
Overview of Spatial Knowledge Graph Construction:

The Spatial Knowledge Graph (SKG) developed in this study successfully integrated
heterogeneous urban datasets from five major domains: transportation, land use,
environmental monitoring, energy consumption, and demographic information. The total
dataset comprised 4.7 million geospatial records, out of which 3.4 million unique entities were
converted into graph nodes, interconnected through 9.8 million spatial and semantic
relationships.

The average data ingestion rate during the graph construction phase was 12,000
records per second, using a distributed Neo4j GraphDB infrastructure optimized with
GeoSPARQL extensions. Spatial indexing and relationship inference reduced data redundancy
by 26.8%, improving query efficiency. The resulting SKG occupied 72.4 GB of storage space,
demonstrating scalability for city-wide data management.
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Data Integration and Ontology Alignment Performance:

Ontology alignment between heterogeneous data sources—OpenStreetMap, Sentinel-
2 imagery, loT sensor streams, and municipal datasets—achieved a semantic consistency score
of 0.93 on the CityGML-based evaluation framework. The triple validation accuracy was
measured at 92.6%, while the ontology coverage rate (i.e., successfully mapped entities per
domain) reached 88.3% for transportation, 85.7% for environmental data, and 82.1% for
energy datasets.

Data linking using spatial topological rules (e.g., intersects, within, adjacentTo) enabled
high-resolution spatial reasoning across 250,000 urban blocks, allowing for precise spatial
correlation queries. The mean query response time for spatial reasoning tasks was 2.3 seconds,
significantly faster than traditional relational queries (average 6.8 seconds).

Relationship between Population Density and Knowledge Graph Integration
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Figure 1. Relationship between population density and knowledge graph integration across
utban districts.
Spatio-Temporal Mobility and Air Quality Correlations:

Analysis of 12 months of IoT-based traffic data and NO; concentrations revealed
significant spatial-temporal dependencies. During weekday peak hours (7:30-9:30 AM and
5:00-7:00 PM), NO;, levels averaged 78.4 pg/m?, compared to 44.2 ug/m? duting non-peak
hours. The Pearson correlation coefficient between average traffic speed and NO,
concentration was -0.71 (p < 0.01), indicating a strong inverse relationship.

The SKG identified 64 high-risk air pollution micro-clusters in Karachi and Lahore,
predominantly located within 300 m of major traffic corridors. The average PMj.5
concentration in these clusters was 93.2 pg/m?, exceeding WHO standards by 85.4%.
Additionally, cross-domain inferencing found that regions with vegetation indices below
NDVI 0.25 exhibited 21% higher NO; levels compared to areas with moderate to high
vegetation coverage (NDVI = 0.45).

Infrastructure Connectivity and Urban Intelligence Index
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Figure 2. Association between infrastructure connectivity and urban intelligence index.

The spatial regression model embedded in the SKG achieved an R* value of 0.82 for
predicting NO; levels based on mobility, land cover, and meteorological inputs, with an RMSE
of 5.8 ng/m*—demonstrating strong predictive accuracy.

Energy Consumption and Urban Land Use Dynamics:

Energy consumption data from 13,248 smart meters were linked to 2,160 land-use
polygons. Commercial and mixed-use zones accounted for 47.8% of total electricity demand,
despite representing only 18.2% of built-up land area. The average energy consumption
density in high-rise business districts was 124.5 kWh/m?/month, compared to 82.2
kWh/m?/month in mid-density residential zones.

A significant seasonal variation was observed, with energy demand peaking in July at
1.42 GWh/day, representing a 24% increase over the annual average. Temporal reasoning in
the SKG identified a time-lagged correlation (r = 0.64) between temperature rise and electricity
demand, indicating predictive potential for urban energy management systems.

The SKG also revealed spatial inequities: low-income residential areas exhibited 18%
higher per-household energy usage variability due to inconsistent supply and unregulated

consumption patterns.
Temporal Trend of Al-driven Spatial Data Accuracy (2018-2024)
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Figure 3. Temporal trend showing improvement in Al-driven spatial data accuracy from
2018-2024.
Flood Risk and Climate Resilience Assessment:

Using integrated elevation data (SRTM), drainage infrastructure layers, and rainfall
intensity records, the SKG’s reasoning engine delineated flood-prone zones across Karachi. A
total of 13 sub-districts were classified as high-risk, with an average impervious surface ratio
exceeding 70%. The flood vulnerability index (FVI) ranged between 0.72 and 0.89, while areas
with poor drainage connectivity (density < 0.002 km/km?) demonstrated a 3.2-fold higher
flood recurrence rate.

Validation using reported 2022 flood incidents yielded an F1-score of 0.84, indicating
reliable spatial prediction performance. The average time for geospatial inferencing of flood
exposure per district was 1.9 seconds, confirming the system’s real-time reasoning capability.
Urban Green Space and Environmental Indicators:

Vegetation cover derived from Sentinel-2 NDVI analysis was dynamically linked
within the SKG to air quality and temperature data. The results showed that districts with
more than 25% green cover maintained 4.8°C lower average land surface temperatures (LST)
compared to urban cores with less than 10% green cover. This cooling effect corresponded
with a 17% improvement in local Air Quality Index (AQI) values.
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Moreover, the SKG-based spatial interpolation demonstrated a cross-domain
consistency score of 0.88, confirming strong alignhment between remote sensing observations
and IoT-derived environmental readings.

Correlation Matrix of Urban Intelligence Variables Looo
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0.950
- I 0.925
Connectivity
r 0.900
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0.825

Al_Index
0.800

Figure 4. Correlation matrix displaying interrelations among urban intelligence variables.
Predictive Performance and System Evaluation:

Comparative evaluation between the SKG and a baseline Graph Convolutional
Network (GCN) without semantic embedding indicated superior performance in
explainability and computational efficiency. The SKG’s semantic reasoning improved
prediction accuracy by 12.4% (RMSE reduction) and reduced query latency by 57.6%. System
scalability tests on 10 million simulated triples showed stable performance, with CPU
utilization below 65% and memory consumption under 38 GB, proving the SKG framework’s
suitability for large-scale smart city deployment.

Finally, feedback from 10 municipal urban planners and 5 GIS analysts using the SKG
dashboard showed a mean usability score of 4.6/5 (System Usability Scale), confirming its
effectiveness as a decision-support tool. Participants highlighted improved data interpretability

and faster cross-domain query execution as key advantages.
Knowledge Graph Adoption Rate by District

804

o
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S
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Figure 5. Adoption rates of knowledge graph systems across five city districts.
Discussion

The results of this study indicate that the implementation of a Spatial Knowledge
Graph (SKG) significantly enhances integrated urban analytics by improving spatial query
efficiency, predictive accuracy, and data interoperability across diverse domains such as
mobility, energy, and environmental monitoring. The improved data integration performance
observed in this study aligns with the findings of [7], who demonstrated that unified urban
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knowledge graphs provide structural priors that enhance spatio-temporal predictions by
capturing interdependencies among heterogeneous urban datasets.

The strong inverse relationship found between traffic flow and NO, concentrations
(r = —0.71) supports established evidence on the spatial coupling between vehicular emissions
and air quality deterioration [22]. Similar research across metropolitan contexts has shown that
road proximity and traffic density serve as primary predictors of localized pollution hotspots
[23]. By embedding these relationships into a semantic network, the SKG not only mirrored
these empirical patterns but also provided interpretable causal linkages between mobility and
environmental indicators, reducing model uncertainty and improving regression performance
(R?=0.82).

The observed positive association between infrastructure connectivity and the Urban
Intelligence Index (R* = 0.89) demonstrates how spatially explicit knowledge representations
improve analytical performance. Comparable findings were reported by [6], who highlighted
that semantic spatial graphs support real-time decision-making by integrating diverse
infrastructure datasets within digital twin frameworks. The higher knowledge graph adoption
rate in densely populated districts (mean = 79%) further supports the view that SKG
integration correlates with both data richness and municipal infrastructure maturity.

Similarly, energy consumption patterns derived from the SKG revealed that
commercial zones exhibited a 15-20% higher energy demand during summer months
compared to residential areas. This result is consistent with [24], who found that incorporating
spatial semantic models into building energy systems enhances demand forecasting by
accurately linking land-use and meteorological data. The correlation between temperature and
energy use (r = 0.64) confirms temperature-driven demand variability, which aligns with urban
digital twin simulations emphasizing the necessity of temporal-semantic integration for energy
management [25].

The SKG-based flood vulnerability assessment, which identified high-risk sub-districts
with impervious surface ratios above 70%, corresponds with findings from the [20],
emphasizing that poor drainage, land cover changes, and high imperviousness are major
drivers of flood susceptibility in Pakistan. The model’s accuracy (F1 = 0.84) and predictive
capability align closely with independent flood hazard modeling studies that utilize hybrid data
fusion and GIS frameworks [27]. The integration of hydrological data, elevation models, and
infrastructure networks within the SKG provided explainable results for municipal disaster
response planning.

Furthermore, the detected relationship between vegetation cover and land surface
temperature (mean AT = 4.8°C) reinforces prior evidence that green spaces mitigate the urban
heat island effect. [28][29] reported comparable reductions in land surface temperature
associated with increases in NDVI and canopy cover density. Through the SKG, this
relationship was contextualized within broader spatial entities, allowing policy-relevant queries
about optimal green space allocation for temperature mitigation.

These findings collectively validate that spatial knowledge graphs can serve as a
semantic backbone for urban intelligence systems, facilitating more efficient and transparent
analyses. As noted by [30], integrating semantic spatial models with Al-driven prediction
mechanisms advances the operational realism of digital twins, bridging the gap between
theoretical modeling and actionable urban management. Despite these advantages, limitations
persist—particularly regarding incomplete data coverage, classification errors in satellite-
derived land use, and latency in updating real-time streaming data within the SKG. Future
enhancements should focus on scalable graph-streaming architectures and causal modeling to
strengthen decision support and interpretability [31].

Opverall, this research confirms that the integration of Spatial Knowledge Graphs with
spatial Al systems enhances analytical efficiency, accuracy, and policy relevance for smart city
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analytics. When complemented with real-time data ingestion and privacy-preserving graph

management, SKGs can form the foundation of future urban digital twins capable of adaptive,

data-driven governance.

Conclusion:

This study demonstrated that integrating spatial knowledge graphs (SKGs) with Al-
driven spatial analytics significantly enhances urban intelligence and decision-making. By
combining remote sensing, IoT, and socio-economic data, the developed SKG model
effectively captured dynamic spatiotemporal relationships among urban entities such as air
quality, traffic, and land use. Quantitative results confirmed strong correlations between urban
density and pollution patterns, supporting the model’s predictive accuracy and operational
relevance. Compared with previous studies, this research advanced SKG applications by
incorporating real-time data and deep learning for dynamic urban analysis. Overall, the
findings highlight SKGs as powerful tools for developing adaptive, data-driven smart city
systems capable of addressing emerging environmental and infrastructural challenges.
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