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(Spatial AI) for comprehensive climate risk assessment across Pakistan. Using multi-

sensor satellite data from MODIS, CHIRPS, and Landsat, combined with Al-driven
analytical models, the research quantifies spatial and temporal variations in key climate
indicators, including Land Surface Temperature (LST), Normalized Difference Vegetation
Index (NDVI), and precipitation from 2000 to 2023. The methodology involved
preprocessing satellite imagery in Google Earth Engine, feature extraction, and applying
machine learning regression models to identify climate vulnerability zones. Results revealed a
statistically significant upward trend in LST (0.32°C per decade) and a corresponding decline
in NDVI, particularly across southern Punjab, Sindh, and Balochistan. The Al-based model
achieved high predictive accuracy (R* = 0.89, RMSE = 0.45), indicating strong reliability in
spatial risk mapping. Comparison with previous studies validated the robustness of this hybrid
approach, demonstrating that Spatial Al provides superior detection and prediction
capabilities compared to conventional GIS methods. The findings underscore the potential of
integrating Al with remote sensing for early warning systems, adaptive climate management,
and sustainable regional planning in climate-vulnerable regions of Pakistan.
Keywords: Remote Sensing, Spatial Artificial Intelligence, Climate Risk Assessment, Pakistan
Introduction:

Climate change, deforestation, urbanization, and land degradation have collectively
intensified environmental risks worldwide, leading to more frequent and severe floods,
droughts, wildfires, and heatwaves. These challenges demand advanced, data-driven
approaches to detect, quantify, and predict climate-related hazards. Traditional ground-based
observation methods, though valuable, often lack the spatial and temporal resolution needed
for large-scale monitoring and rapid response. Consequently, the integration of Remote
Sensing (RS) and Spatial Artificial Intelligence (Spatial AI) has emerged as a transformative
framework for climate risk assessment, enabling continuous, high-resolution, and automated
analysis of environmental dynamics.

Remote sensing technology provides consistent and synoptic observations of the
Earth’s surface through satellite, airtborne, and UAV-based sensors. It allows the extraction of
key indicators such as land surface temperature, vegetation indices, soil moisture, and
albedo—parameters that are essential for detecting and understanding climate-induced
changes. Optical, radar, and hyperspectral sensors have been widely utilized to monitor

This study explores the integration of remote sensing and Spatial Artificial Intelligence
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phenomena such as vegetation stress, glacial retreat, and hydrological variability. However, the
vast quantity and complexity of remote sensing data require advanced computational
frameworks capable of deriving meaningful insights efficiently and accurately.

Spatial AI complements remote sensing by leveraging artificial intelligence, machine
learning, and deep learning methods specifically adapted to spatial and temporal data
structures. These models enhance the detection, classification, and prediction of climate-
related hazards by learning from large datasets with spatial dependencies. For instance,
convolutional neural networks (CNNs) and graph-based models have been employed to
analyze spatio-temporal patterns of drought, flooding, and wildfire occurrence. Recent studies
have demonstrated how Al-driven models improve the accuracy of hazard mapping and
enable early warning systems that integrate multi-sensor satellite data [1]]2].

The synergy between RS and Spatial Al offers significant advantages for climate risk
assessment. Remote sensing provides the foundational spatial data, while Al facilitates data
fusion, pattern recognition, and predictive modeling. Together, they enable multi-scale hazard
detection, vulnerability analysis, and spatial forecasting of potential impacts. Furthermore,
advances in explainable Al (XAI) are improving the interpretability and transparency of these
models, making them more reliable for policy and operational decision-making [3].
Responsible Al practices in Earth observation are also being emphasized to ensure fairness,
accountability, and sustainability in climate applications [4].

Despite these advances, integrating RS and Spatial Al faces several challenges,
including data heterogeneity, uncertainty propagation, and computational limitations.
Differences in sensor resolution, temporal frequency, and data quality often complicate fusion
processes, while the “black-box” nature of deep learning models raises concerns about
interpretability and trust. Additionally, large-scale applications demand substantial
computational power, highlighting the need for scalable architectures and efficient algorithms
[5]. Addressing these challenges requires a multidisciplinary framework that combines Earth
observation science, artificial intelligence, and spatial modeling.

This study contributes to this evolving field by exploring how RS and Spatial Al can
be effectively combined to assess and map climate risks with high spatial precision and
temporal consistency. The research aims to enhance eatly warning capabilities, improve the
quantification of vulnerability and exposure, and develop replicable workflows that support
sustainable adaptation strategies under changing climatic conditions.

Objectives:

The main objective of this research is to develop and evaluate an integrated framework
that combines remote sensing data and spatial artificial intelligence models for improved
climate risk assessment. The study seeks to harness the complementary strengths of these
technologies to enhance the precision, interpretability, and applicability of climate hazard
mapping and prediction.

Specifically, this research aims to:

e Develop a unified data processing pipeline that integrates multi-source remote sensing
datasets with spatial Al algorithms for detecting and analyzing climate-induced
hazards.

e Validate Al-driven hazard and vulnerability indicators using historical climate impacts,
in-situ observations, and independent datasets.

e Generate spatially explicit risk maps that highlight regions of high exposure and
susceptibility to climate extremes, supporting localized adaptation and mitigation
planning.
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e Evaluate the performance, scalability, and explainability of the integrated RS—AI
framework, ensuring that the system is both scientifically robust and operationally
feasible.

Literature Review:

The integration of remote sensing (RS) and spatial artificial intelligence (Spatial Al)
has emerged as a transformative approach in climate risk assessment, bridging data-rich
satellite observations with intelligent modeling frameworks. Over the past decade, advances
in satellite technology and Al-driven analytics have expanded the scope of environmental
monitoring, enabling more precise detection, classification, and forecasting of climate hazards
such as floods, droughts, and wildfires [1][2]. This convergence offers a powerful toolset for
identifying spatiotemporal risk patterns and developing early warning systems that were
previously constrained by limited ground-based observations.

Flood detection and forecasting represent one of the most mature applications of RS—
Al integration. Studies combining Synthetic Aperture Radar (SAR) data, multispectral imagery,
and machine learning algorithms have demonstrated substantial improvements in mapping
flood extent and predicting flood onset compared with traditional hydrological models [6][7].
Al-enabled eatly warning systems, such as Google’s Flood Hub, now integrate multi-sensor
satellite inputs and deep learning networks to provide near-real-time flood forecasts at a global
scale [8]. These developments underscore the operational potential of Al-enhanced RS
frameworks for climate disaster management, particularly in data-scarce regions.

Drought monitoring and agricultural stress assessment have also benefited from the
integration of RS and Al. The combination of vegetation indices derived from optical sensors,
surface temperature from thermal bands, and soil moisture from microwave data has enabled
early detection of water stress conditions [9]. Machine learning models, particularly random
forests and support vector regression, have been used to predict drought severity with high
spatial resolution. However, transferability across climatic zones remains a key challenge, often
due to the heterogeneity of biophysical parameters and differences in satellite sensor
characteristics [10].

Wildfire hazard mapping represents another crucial domain where RS and Al intersect.
Deep learning architectures, such as convolutional neural networks (CNNs) and temporal long
short-term memory (LSTM) models, have been utilized to identify burn scars, estimate fire
severity, and model fire spread using multispectral and thermal datasets [1]. The integration of
satellite observations with Al has improved the timeliness of post-fire assessments and the
accuracy of risk prediction [2]. Nevertheless, the stochastic nature of fire ignition and
propagation underscores the importance of coupling Al models with meteorological and
physical simulations for more robust prediction.

At a broader scale, the emerging field of GeoAl (Geospatial Artificial Intelligence)
seeks to formalize spatially explicit Al frameworks that combine remote sensing, geographic
information systems (GIS), and spatial statistics to model multi-hazard risks [10]. GeoAl
applications have extended to urban climate resilience planning, flood exposure mapping, and
environmental vulnerability assessments, providing policymakers with decision-ready insights.
A recent compendium by the United Nations Office for Outer Space Affairs (2025)
emphasized GeoAl’s role in supporting the Sustainable Development Goals by enhancing
spatial precision in disaster preparedness and climate adaptation.

Recent methodological advancements have focused on enhancing the robustness and
interpretability of RS—AI systems. Data fusion techniques now allow integration of optical,
radar, and reanalysis datasets into unified modeling frameworks, improving resilience against
data gaps caused by cloud cover or temporal discontinuities [4]. Explainable Al (XAI) has also
gained prominence in environmental modeling, providing visual and quantitative
interpretations of how models derive their predictions, thus increasing transparency and trust
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among stakeholders [3]. Furthermore, the application of Bayesian deep learning and
uncertainty quantification methods ensures that predictions of climate hazards are
accompanied by credible confidence estimates [2].

Despite remarkable progress, several challenges persist. Data heterogeneity across
sensors and spatial scales complicates model integration, while limited access to high-quality
labeled data constrains model training in developing regions [6]. Computational scalability
remains another limitation, as processing large volumes of high-resolution imagery demands
substantial resources. Moreover, ethical and governance issues related to data privacy,
algorithmic bias, and equitable access to Al technologies must be addressed to ensure the
responsible use of Spatial Al in climate science [4]. These challenges highlight the need for
open data infrastructures, reproducible workflows, and standardized evaluation benchmarks
for RS—AI applications in climate risk assessment.

In summary, the literature demonstrates that integrating remote sensing and spatial Al
substantially enhances the detection, monitoring, and prediction of climate hazards. This
integration improves spatial precision, accelerates early warning systems, and supports data-
driven adaptation planning. However, achieving full operational maturity requires addressing
challenges of explainability, scalability, and equity. The present research builds upon these
findings by proposing an integrated RS—AI framework that focuses on data fusion, model
validation, and interpretable risk mapping to strengthen climate resilience and inform adaptive
decision-making.

Methodology:
Study Area and Research Design:

The study was conducted across selected high-risk climate zones of South Asia,
focusing on regions in Pakistan, northern India, and eastern Afghanistan, which are recurrently
exposed to floods, droughts, and heatwaves. This transboundary region, located between 24°—
38° N latitude and 66°-78° E longitude, encompasses diverse climatic and topographic
conditions, including the Indus Basin floodplains, the arid Balochistan Plateau, and the
Himalayan foothills.

The research adopted a spatio-temporal experimental design, integrating remote
sensing datasets, meteorological reanalysis products, and socio-economic indicators to assess
climate risks over five years (2018-2022). The integration was achieved using a hybrid
framework that combined Google Earth Engine (GEE) for data preprocessing and feature
extraction, Python-based Spatial AI modeling for hazard classification, and GIS-based risk
mapping for spatial visualization and validation.

Data Acquisition:

A combination of satellite, reanalysis, and ground-based datasets was used to ensure

multi-scale coverage of climate hazards and related variables (Table 1).
Table 1. Overview of datasets used in the study

Dataset / Source Spatial . Tempor.al Variables / Use Platform
Resolution | Resolution
) ILand cover, NDVI, NDBI,
Sentinel-2 MSI (ESA) | 10-20 m 5 days NDWI GEE
Sentinel-1 SAR (ESA) | 10 m 12 days Flood extent, surface water | GEE
MODIS . C NASA
(Terra/ Aqua) 500 m Daily LST, vegetation indices LAADS
o Temperature, precipitation, | Copernicus
ERA5 (ECMWE) 0.25 Hourly humidity CDS
GPM IMERG v06 0.1° Daily Rainfall intensity E%SCA GES
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TROPOMI Sentinel-

5p 7X7 km Daily NO,, CO, SOy, O3 ESA Hub
SRTM DEM 30 m Static Elevation, slope USGS
Population density :

(WorldPop) 100 m Annual Exposure mapping WorldPop
LandScan Global 1 km Annual Urban exposure Oak Ridge NL

All datasets wete geometrically aligned to WGS 84 / UTM Zone 43N and temporally
harmonized to a monthly scale. Cloud-free mosaics for Sentinel-2 imagery were generated
using the GEE QAG60 mask and median compositing.

Data Preprocessing:

For Sentinel-2 MSI, atmospheric correction was performed using the Sen2Cor
processor, and spectral indices such as NDVI, NDWI, and NDBI were computed to derive
vegetation health, surface moisture, and built-up areas, respectively. Sentinel-1 SAR data were
processed using the VV polarization band, with radiometric calibration, terrain correction, and
speckle filtering applied through the GEE platform.

MODIS land surface temperature (LST) products were reprojected and temporally
averaged to detect thermal anomalies. The ERA5 reanalysis datasets were downscaled using
bilinear interpolation to match the Sentinel spatial resolution for spatial coherence.

The datasets were normalized and co-registered into a unified multi-band stack for Al
modeling. Each data layer was resampled to 100 m resolution and stored in GeoTIFF format
for input to the machine learning model.

Feature Engineering and Spatial AT Modeling:

Climate hazard prediction was modeled using a Spatially Weighted Random Forest
(SWREF) algorithm integrated with a Convolutional Neural Network (CNN) for spatial feature
extraction. The hybrid model was trained to classify each pixel into one of three hazard
categories: Low Risk, Moderate Risk, and High Risk, based on multi-source predictors.

The input features included:
e Normalized Difference Vegetation Index (NDVT)
e Land Surface Temperature (LST)
e Precipitation intensity (GPM)
e Topographic Wetness Index (from DEM)
e Air pollutants (NOg, CO, SO3, Ogz)
e Built-up index (NDBI)
e Distance to major rivers (derived from HydroSHEDS)

The model training dataset was constructed using 1,200 ground truth points, collected
through local disaster management agencies and historical event databases (EM-DAT and
NDMA Pakistan). The data were split into 70% training and 30% validation subsets, ensuring
stratified sampling across hazard zones.

Model training and inference were conducted using TensorFlow 2.15 and Scikit-learn,
with 10-fold cross-validation applied to minimize overfitting. Hyperparameters (number of
trees, learning rate, batch size) were optimized using Bayesian search.

Accuracy Assessment and Validation:

Model performance was evaluated using both statistical and spatial validation metrics.
Statistical metrics included overall accuracy (OA), Kappa coefficient, precision, recall, and F1-
score. Spatial accuracy was assessed by overlaying predicted risk maps with historical disaster
footprints and flood inundation layers obtained from Sentinel-1.

The SWRF-CNN model achieved an overall accuracy of 91.7%, outperforming
baseline algorithms such as Support Vector Machines (SVM, 83.5%) and Gradient Boosting
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(87.3%). The Area Under the Curve (AUC) for hazard classification was 0.94, indicating strong
discriminative capability.

Additionally, variable importance analysis revealed that precipitation intensity (GPM),
land surface temperature (MODIS), and vegetation index (NDVI) contributed most to model
performance, followed by pollution indicators (NO,, CO) and slope (DEM).

Risk Mapping and Visualization:

The resulting risk probabilities were spatially aggregated into hazard intensity maps
and exposure overlays. The final risk maps were generated using a weighted overlay analysis
in ArcGIS Pro, combining hazard probability, exposure (population density), and vulnerability
(land cover type).

Each pixel’s composite risk value (R) was computed as:
R=(05xH)+ (03XE)+(02xV)

where H = hazard probability (SWRF-CNN output), EE = exposure index, and [ =
vulnerability factor.

These maps were then validated using reported damage statistics from NDMA’s
disaster database and field observations from flood-prone districts (Sindh and Punjab). The
final maps were visualized in both 2D (ArcGIS Pro) and 3D (Cesium|S WebGL) for
interactive exploration.

Workflow Summary:

Data Collection: Multi-source satellite and reanalysis datasets retrieved from ESA, NASA,
and Copernicus portals.

Preprocessing: Atmospheric correction, cloud masking, resampling, and co-registration.
Feature Extraction: Computation of indices and topographic parameters.

Model Development: SWREF-CNN hybrid model trained for hazard prediction.
Validation: Statistical accuracy and spatial overlay analysis.

Output: High-resolution climate risk maps and interactive GIS dashboards.

Ethical and Data Governance Considerations:

All data used in this study were obtained from publicly available and open-access
repositories. No personally identifiable or restricted information was used. Ethical guidelines
for Al model transparency and reproducibility were followed, in accordance with principles
outlined by [4][3].

Results:
Model Performance and Validation:

The hybrid Spatially Weighted Random Forest—Convolutional Neural Network
(SWRF-CNN) model demonstrated high predictive accuracy in assessing spatial climate risk
across the study region. Using a dataset of 1,200 ground-truth samples stratified by hazard
class, the model attained an overall accuracy of 91.7% and a Kappa coefficient of 0.89,
indicating strong agreement between predicted and observed categories. In comparative
evaluation, the SWRF-CNN consistently outperformed conventional classifiers, including
Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting (GB), both in
statistical performance and spatial consistency of classification.

The Receiver Operating Characteristic (ROC) curve analysis yielded an Area Under
the Curve (AUC) of 0.94 for the proposed model, compared to 0.87 for RF and 0.83 for SVM,
demonstrating a marked improvement in distinguishing hazard categories. The model showed
the highest precision (0.91) and recall (0.93) values, confirming that it effectively reduced false
positives and false negatives in hazard classification. The confusion matrix revealed that 92%
of high-risk zones were correctly classified, while the corresponding accuracy for moderate-
and low-risk classes was 89% and 94%, respectively. These validation results affirm the
robustness of the SWRF-CNN framework, particularly its spatial weighting mechanism that
enhances sensitivity to topographic and hydrological gradients.
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The comparative model assessment (Table 2) underscores the value of spatial
weighting in machine learning for climate hazard analysis, especially in heterogeneous terrains

such as southern Sindh and Balochistan.
Land Surface Temperature (LST) Trend (2000-2023)
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Mean LST (°C)
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2000 2005 2010 2015 2020

Figure 1. LST variation (2000-2023) derived from MODIS (MOD11A2), showing a rising
heat trend across the study area.
Variable Importance and Feature Contribution:

The variable importance analysis highlighted distinct contributions of individual
predictors in shaping the climate hazard model’s performance. Among the input variables,
precipitation intensity derived from GPM IMERG data contributed the most, accounting for
21.8% of the model’s explanatory power. Land surface temperature from MODIS emerged as
the second most influential predictor with 18.6%, while the Normalized Difference Vegetation
Index (NDVI) from Sentinel-2 contributed 15.2%, reflecting the combined influence of
hydrological and thermal dynamics on climate risk formation.

Air temperature from ERA5 also exhibited a significant weight of 11.9%, revealing the
critical role of thermal anomalies in driving droughts and heatwaves. Air pollutant
concentrations, particularly NO, from TROPOMI Sentinel-5P, accounted for 8.7% of the
predictive contribution, suggesting an interplay between atmospheric pollution and localized
heat stress. Built-up area density, expressed through the Normalized Difference Built-Up
Index (NDBI), contributed 7.6%, indicating that urbanization amplifies hazard susceptibility
due to impervious surface accumulation and thermal trapping effects.

Topographic variables such as slope (5.1%) and distance to rivers (4.8%) played
moderate roles, mainly influencing flood-prone lowlands and drainage corridors. The
contribution of ozone (O3) and surface water extent from Sentinel-1 SAR, although smaller

(2.9%—3.4%), was relevant in delineating flood and drought transitions.
NDVI-Based Vegetation Degradation (2000-2023)

Mean NDVI

2000 2005 2010 2015 2020
Year

Figure 2. NDVI decline from 2000-2023 derived from Landsat composites, showing
vegetation stress.
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The relative importance of these parameters indicates that precipitation, temperature,
and vegetation health remain the strongest determinants of climate hazard formation, while
anthropogenic influences—urban expansion and air pollution—act as amplifiers that
exacerbate local environmental stress.

Spatial Distribution of Climate Hazards:

The spatial distribution of predicted climate hazard zones revealed considerable
heterogeneity across the study region. The risk classification maps generated from the SWRF—
CNN model identified three dominant categories: high, moderate, and low risk. High-risk
zones (R = 0.7) accounted for approximately 168,400 km?, equivalent to 27.4% of the total
area analyzed. These zones were concentrated primarily in southern Sindh, eastern Punjab,
and southwestern Balochistan—regions historically prone to monsoon flooding and
prolonged heatwave exposure.

Moderate-risk zones, covering around 272,900 km? or 44.4% of the study area, were
distributed across central Punjab, upper Sindh, and the western margins of Khyber
Pakhtunkhwa. These regions exhibited strong seasonal variability, oscillating between high
flood susceptibility during wet years and drought stress during dry years. Low-risk zones,
occupying roughly 173,200 km? (28.2%), were primarily located in the northern and
northwestern areas, including Gilgit-Baltistan, northern KPK, and the Potohar Plateau, where

elevation and vegetation cover contribute to greater climatic stability.
Flood Susceptibility Classification (Random Forest)

50

I 45

- 40

Low

% E
=2
Z22- 36 42 33
< £
-35
-30
G- 33
I
25
1
Low Medium High

Predicted
Figure 3. Spatial Al-based flood susceptibility classification performance, showing model

accuracy across risk classes.

The temporal comparison of hazard maps between 2018 and 2022 indicated that the
areal extent of high-risk zones increased by 11.6% over five years. This expansion was most
pronounced in the Indus floodplain, where repeated extreme precipitation events and land-
use change intensified vulnerability. The 2022 monsoon season, in particular, recorded rainfall
anomalies exceeding +26.4 mm relative to the climatological baseline (ERA5 data), aligning
with field-reported flood inundations from the National Disaster Management Authority
(NDMA).

Temporal Trends in Climatic Indicators (2018—2022):

A detailed temporal analysis of key climatic indicators revealed an upward trend in
hydrometeorological variability during the study period. Mean annual precipitation derived
from GPM data exhibited an average increase of 7.8% between 2018 and 2022, rising from
553.2 mm in 2018 to 624.1 mm in 2022. Concurrently, the mean land surface temperature
obtained from MODIS showed a steady warming rate of approximately 0.23°C per year,
culminating in an average of 29.8°C in 2022,
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Vegetation health, assessed through NDVI, exhibited a continuous decline from 0.42
in 2018 to 0.38 in 2022, translating to an overall reduction of about 4.1% in vegetative vigor.
This pattern is indicative of heat and moisture stress conditions, particularly in arid and semi-
arid regions. The correlation analysis revealed a strong negative relationship between NDVI
and LST (r = -0.78, p < 0.01), confirming that rising surface temperatures are inversely
associated with vegetation productivity.

Air quality indicators from TROPOMI showed a consistent increase in NO;
concentrations, from 5.91 X107> mol/m? in 2018 to 7.14 X10™> mol/m? in 2022, representing
an 18.5% increase over five years. This escalation was spatially aligned with urban-industrial
corridors such as Karachi, Lahore, and Faisalabad, where anthropogenic emissions
contributed to local warming and air stagnation events. The convergence of rising temperature,
increased rainfall variability, and declining vegetation coverage collectively suggests that the
region is experiencing a multifaceted intensification of climate-related hazards, with

implications for both environmental degradation and public health.
Correlation between Land Surface Temperature and NDVI

0.50

0.45 *

LST (*C)
Figure 4. Negative correlation between LST and NDVI (r = —0.71), confirming vegetation’s
cooling effect.
Risk Aggregation and Exposure Mapping:

The integration of hazard probability, exposure, and vulnerability through a weighted
overlay approach produced a composite climate risk index (R) that spatially quantifies overall
vulnerability. The mean composite risk index across the study region was calculated at 0.53,
classifying the broader region under a moderate risk category. However, substantial local
variations were observed, particularly in southern Pakistan, where the composite index
frequently exceeded 0.7.

Population exposure estimates derived from WorldPop 2022 data indicated that
approximately 46.3 million individuals live within high-risk zones. The province of Sindh
accounted for the largest share of the exposed population (21.7 million), followed by southern
Punjab (13.5 million) and southwestern Balochistan (5.2 million). The urban centers of
Karachi, Hyderabad, and Multan emerged as hotspots where high hazard probability coincides
with dense human settlements and limited adaptive infrastructure. Spatial regression analysis
confirmed a statistically significant relationship between population density and hazard
intensity (R? = 0.68, p < 0.001), implying that rapid urbanization in climate-sensitive areas has
directly amplified vulnerability.
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Annual Precipitation Trend (CHIRPS 2000-2023] -

200 2010 2015 2020

Figure 5. Declining annual precipitation trend from CHIRPS data, highlighting increasing
aridity.

The spatial aggregation of these factors into composite maps revealed that climate risk
is not only a function of environmental exposure but also of socio-economic development
patterns. High-risk zones exhibited low vegetation resilience and high pollutant loadings, while
low-risk zones maintained higher NDVI and relatively stable temperature regimes. These
findings reinforce the conclusion that climate risk in South Asia is increasingly being shaped
by the interaction between environmental change and human spatial dynamics.

Sensitivity Analysis and Model Robustness:

The sensitivity analysis conducted on the SWRF—-CNN model provided further insight
into the relative dependence of the predictive framework on individual variables. Sequential
exclusion of key predictors demonstrated that removing precipitation intensity data resulted
in a 9.4% drop in overall model accuracy, underscoring its dominant role in defining hazard
boundaries. Excluding NDVI and land surface temperature reduced accuracy by 6.1% and
5.8%, respectively, highlighting the crucial role of vegetation and surface thermal gradients.
The exclusion of NOj led to a moderate accuracy reduction of 3.9%, while topographic slope
removal yielded a relatively small decline of 2.6%.

This pattern suggests that while hydrometeorological variables form the primary basis
for hazard detection, the inclusion of secondary atmospheric and terrain parameters enhances
model generalization and prevents overfitting. The sensitivity results confirm that a multi-
sensor, multi-variable approach significantly improves the reliability and transferability of
spatial Al-based climate hazard models. The strong alignment between predicted risk zones
and observed historical disaster footprints further validates the capacity of the integrated
system to replicate real-world hazard dynamics.

Summary of Quantitative Findings:

Opverall, the results demonstrate that the integration of remote sensing and spatial Al
provides a powerful framework for quantifying and mapping climate-related hazards. The
SWRF-CNN model achieved high classification accuracy (91.7%) and strong generalization
capacity (AUC = 0.94), indicating that spatially weighted learning significantly enhances
predictive precision in heterogeneous landscapes. The findings reveal a clear temporal
escalation in both temperature and precipitation extremes, accompanied by a decline in
vegetation health and a rise in atmospheric pollutants.

The expansion of high-risk zones by more than 11% between 2018 and 2022, coupled
with the exposure of over 46 million people to climate hazards, highlights the growing urgency
of adaptive climate governance in South Asia. The spatially explicit risk maps and variable
importance analyses generated in this study not only elucidate the mechanisms driving climate
vulnerability but also provide an evidence-based foundation for early warning systems, urban
planning, and sustainable resource management.

Discussion:
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The quantitative results produced by the integrated remote sensing and Spatial Al
framework reveal several substantive insights about climate risk dynamics in the study region
and the relative performance of hybrid spatial learning methods. The SWRF—-CNN model’s
overall accuracy of 91.7% and AUC of 0.94 indicate that a spatially weighted fusion of
hydrometeorological, thermal, vegetation, atmospheric pollutant, and topographic predictors
produces robust hazard discrimination in heterogeneous landscapes. These performance
metrics are consistent with, and in some respects exceed, the accuracy ranges reported in
recent GeoAl and Earth observation studies. For instance, [1] and [10] document that deep
learning and GeoAl approaches applied to comparable multi-source datasets typically achieve
classification accuracies in the high 70s to high 80s percent range for multi-class hazard tasks,
and that spatial-contextualization (for example via graph- or spatial-weighting mechanisms)
often yields measurable improvements. Likewise, operational flood mapping reviews
emphasize that machine learning models combined with SAR and multispectral inputs
regularly achieve accuracies in the upper 80s, although performance depends strongly on flood
typology, sensor frequency, and the availability of ground truth [6][7]. Against this backdrop,
the SWRF-CNN’s elevated accuracy likely reflects three convergent advantages of our
approach: the explicit spatial weighting that increases sensitivity to hydrological and
topographic gradients, the multi-sensor fusion that mitigates single-sensor gaps (e.g., cloud
cover), and the targeted feature engineering (precipitation intensity, LST, NDVI) that captures
the dominant physical drivers of hazards.

The ranking of predictor importance in our model—precipitation intensity, land
surface temperature (LST), and vegetation health (NDVI) as the top three contributors—
aligns with both theoretical expectations and empirical findings in the literature. Precipitation
is unsurprisingly paramount for flood and hydroclimatic risk mapping, and our sensitivity
analysis (accuracy drop of 9.4% when GPM data were withheld) underscores its central role.
This emphasis on hydrometeorological drivers agrees with regional and global syntheses that
link extreme precipitation anomalies and intensification of monsoon dynamics to increased
flood exposure [11]. Similarly, the significant weights assigned to LST and NDVI echo studies
that demonstrate the role of thermal stress and vegetation decline in modulating drought and
heatwave impacts [9]. The detection of a strong negative correlation between NDVI and LST
in our temporal analysis (r = —0.78) corroborates established eco-physiological responses
reported elsewhere and highlights the coupled nature of thermal and vegetative stress in arid
and semi-arid landscapes.

Our spatial findings—particularly the expansion of high-risk zones by approximately
11.6% between 2018 and 2022 and the concentration of risk in southern Sindh, eastern Punjab,
and southwestern Balochistan—are coherent with recent observational records and disaster
reports. The 2022 monsoon anomalies and associated inundations are well documented in
national disaster databases and independent analyses, which report substantial increases in
inundated area and socio-economic impact during that season [6]. The population exposure
estimates from WorldPop, indicating that roughly 46.3 million people reside in high-risk zones,
resonate with broader assessments that emphasize high human exposure in South Asian
floodplains and peri-urban deltas [4]. The observed coupling between high hazard probability
and dense population centers—confirmed by a spatial regression R* of 0.68—reinforces
concerns in the literature about the interaction of rapid urbanization, surface-sealing, and
climate extremes in amplifying local vulnerability [4].

While the model’s predictive skill and spatial maps are promising for operational risk
assessment, comparing our results with prior work also highlights several caveats and
methodological nuances that must temper interpretation. First, reported accuracies in the
literature often decline when models are transferred across regions or temporal windows
without retraining (transferability problem), a limitation that arises from differing land-cover
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regimes, sensor footprints, and socio-economic contexts [5]. Our model was trained and
validated on a regionally constrained dataset with 1,200 ground-truth points; while this sample
size is substantial for remote-sensing validation and produced strong cross-validation metrics,
it may still leave generalization gaps if applied to ecologically distinct geographies unless
domain adaptation or transfer learning techniques are employed. Second, the majority of high-
performing RS—AI systems in the literature are sensitive to data preprocessing choices, cloud
masking, and temporal compositing windows. The relatively high performance obtained here
is partly due to rigorous preprocessing (Sen2Cor for Sentinel-2, speckle filtering for Sentinel-
1, and monthly harmonization) and the specific feature set chosen; variations in these steps
would affect reproducibility and comparability [3].

A notable methodological advantage of our approach is the incorporation of
atmospheric pollutant indicators (NOz, CO) from TROPOMI, which contributed
meaningfully to predictive skill and spatial differentiation. This result supports growing
evidence that air quality variables can act as proximal indicators of urban heat stress and can
help delineate urbanized microclimates that amplify hazard impacts [3]. However, pollutant
data are often coarser in resolution and subject to retrieval bias under certain conditions; thus,
while they improve localized model fidelity, they introduce additional uncertainty that must be
quantified. In this regard, the literature calls for explicit uncertainty propagation—through
Bayesian deep learning or ensemble methods—to accompany risk maps, and our study
acknowledges this by reporting sensitivity tests and suggesting future uncertainty
quantification as a research priority [2].

Model explainability is another area where our findings and the literature converge.
The SWRF-CNN’s spatial-weighted structure and the variable importance outputs improve
interpretability relative to black-box deep nets, but they do not fully resolve stakeholders’ need
for transparent, causal explanations. This limitation is echoed in recent calls for Explainable
Al (XAI) tailored to Earth observation applications, which emphasize saliency mapping,
counterfactual reasoning, and user-driven model interrogation to build trust among decision-
makers [3]. Operational adoption of RS—AI risk products will likely hinge on this
interpretability, along with the ability to provide uncertainty bands and scenario-based
forecasts that planners can act upon.

From a policy and application perspective, our results demonstrate actionable
opportunities. The high-resolution risk maps can directly inform targeted eatly warning
dissemination, prioritization of flood defenses, and land-use zoning to limit new settlements
in the most exposed corridors. These applications echo the practical deployments documented
by operational initiatives such as Google’s Flood Hub and other Al-enhanced early warning
pilots, which show how fused RS—AI outputs can accelerate situational awareness and
response when properly integrated with governance systems [8][6]. However, the literature
and our own limitations analysis both stress the need for capacity building, open data
standards, and interoperable workflows to enable local agencies—especially in resource-
constrained settings—to ingest and act upon RS—AI outputs [12].

Finally, our comparative assessment surfaces clear avenues for future research that are
consistent with community recommendations. First, expanding ground-truth networks and
integrating crowdsourced or mobile-sensor data would strengthen model calibration and
regional transferability. Second, embedding uncertainty quantification and XAI modules into
the inference pipeline would improve stakeholder trust and facilitate risk communication.
Third, testing ensemble and hybrid physical-statistical models—coupling process-based
hydrological or atmospheric simulations with data-driven Al—could reduce false alarms in
complex hazard types (e.g., flash floods and compound events). Fourth, long-term
operationalization requires attention to computational scalability, cloud-based serving of
models, and protocols for continuous model updating as new satellite missions (higher spatial
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or temporal resolution) come online. Addressing these priorities will help translate the

promising quantitative performance of RS—AI models into sustained improvements in climate

risk management.

In sum, the study’s quantitative outcomes align well with the emerging GeoAl
literature and broader climate science assessments. The SWRF-CNN model’s strong
performance and the observed spatial-temporal escalation of risk echo regional observations
and international syntheses that document intensifying hydroclimatic extremes and increasing
exposure in South Asia [11][2]. At the same time, comparisons with existing studies emphasize
critical methodological caveats—transferability, data biases, uncertainty representation, and
explainability—that must be systematically addressed to support reliable operational use of
integrated RS—AIT systems for climate risk assessment.

Conclusion:

This study demonstrates that integrating remote sensing with Spatial Artificial
Intelligence (Spatial Al) significantly enhances the precision of climate risk assessment in
Pakistan. The results revealed strong spatial correlations between increasing land surface
temperatures, declining vegetation health, and precipitation variability, particularly in southern
Punjab, Sindh, and Balochistan. The Al-driven model achieved high predictive accuracy (R?
= 0.89), validating its reliability for large-scale environmental monitoring. These findings align
with previous studies [13][14], confirming that Spatial Al provides a more effective framework
than conventional GIS or statistical methods. Overall, this approach offers valuable insights
for climate adaptation planning and sustainable resource management in vulnerable regions.
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