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his study explores the integration of remote sensing and Spatial Artificial Intelligence 
(Spatial AI) for comprehensive climate risk assessment across Pakistan. Using multi-
sensor satellite data from MODIS, CHIRPS, and Landsat, combined with AI-driven 

analytical models, the research quantifies spatial and temporal variations in key climate 
indicators, including Land Surface Temperature (LST), Normalized Difference Vegetation 
Index (NDVI), and precipitation from 2000 to 2023. The methodology involved 
preprocessing satellite imagery in Google Earth Engine, feature extraction, and applying 
machine learning regression models to identify climate vulnerability zones. Results revealed a 
statistically significant upward trend in LST (0.32°C per decade) and a corresponding decline 
in NDVI, particularly across southern Punjab, Sindh, and Balochistan. The AI-based model 
achieved high predictive accuracy (R² = 0.89, RMSE = 0.45), indicating strong reliability in 
spatial risk mapping. Comparison with previous studies validated the robustness of this hybrid 
approach, demonstrating that Spatial AI provides superior detection and prediction 
capabilities compared to conventional GIS methods. The findings underscore the potential of 
integrating AI with remote sensing for early warning systems, adaptive climate management, 
and sustainable regional planning in climate-vulnerable regions of Pakistan. 
Keywords: Remote Sensing, Spatial Artificial Intelligence, Climate Risk Assessment, Pakistan 
Introduction: 

Climate change, deforestation, urbanization, and land degradation have collectively 
intensified environmental risks worldwide, leading to more frequent and severe floods, 
droughts, wildfires, and heatwaves. These challenges demand advanced, data-driven 
approaches to detect, quantify, and predict climate-related hazards. Traditional ground-based 
observation methods, though valuable, often lack the spatial and temporal resolution needed 
for large-scale monitoring and rapid response. Consequently, the integration of Remote 
Sensing (RS) and Spatial Artificial Intelligence (Spatial AI) has emerged as a transformative 
framework for climate risk assessment, enabling continuous, high-resolution, and automated 
analysis of environmental dynamics. 

Remote sensing technology provides consistent and synoptic observations of the 
Earth’s surface through satellite, airborne, and UAV-based sensors. It allows the extraction of 
key indicators such as land surface temperature, vegetation indices, soil moisture, and 
albedo—parameters that are essential for detecting and understanding climate-induced 
changes. Optical, radar, and hyperspectral sensors have been widely utilized to monitor 
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phenomena such as vegetation stress, glacial retreat, and hydrological variability. However, the 
vast quantity and complexity of remote sensing data require advanced computational 
frameworks capable of deriving meaningful insights efficiently and accurately. 

Spatial AI complements remote sensing by leveraging artificial intelligence, machine 
learning, and deep learning methods specifically adapted to spatial and temporal data 
structures. These models enhance the detection, classification, and prediction of climate-
related hazards by learning from large datasets with spatial dependencies. For instance, 
convolutional neural networks (CNNs) and graph-based models have been employed to 
analyze spatio-temporal patterns of drought, flooding, and wildfire occurrence. Recent studies 
have demonstrated how AI-driven models improve the accuracy of hazard mapping and 
enable early warning systems that integrate multi-sensor satellite data [1][2]. 

The synergy between RS and Spatial AI offers significant advantages for climate risk 
assessment. Remote sensing provides the foundational spatial data, while AI facilitates data 
fusion, pattern recognition, and predictive modeling. Together, they enable multi-scale hazard 
detection, vulnerability analysis, and spatial forecasting of potential impacts. Furthermore, 
advances in explainable AI (XAI) are improving the interpretability and transparency of these 
models, making them more reliable for policy and operational decision-making [3]. 
Responsible AI practices in Earth observation are also being emphasized to ensure fairness, 
accountability, and sustainability in climate applications [4]. 

Despite these advances, integrating RS and Spatial AI faces several challenges, 
including data heterogeneity, uncertainty propagation, and computational limitations. 
Differences in sensor resolution, temporal frequency, and data quality often complicate fusion 
processes, while the “black-box” nature of deep learning models raises concerns about 
interpretability and trust. Additionally, large-scale applications demand substantial 
computational power, highlighting the need for scalable architectures and efficient algorithms 
[5]. Addressing these challenges requires a multidisciplinary framework that combines Earth 
observation science, artificial intelligence, and spatial modeling. 

This study contributes to this evolving field by exploring how RS and Spatial AI can 
be effectively combined to assess and map climate risks with high spatial precision and 
temporal consistency. The research aims to enhance early warning capabilities, improve the 
quantification of vulnerability and exposure, and develop replicable workflows that support 
sustainable adaptation strategies under changing climatic conditions. 
Objectives: 

The main objective of this research is to develop and evaluate an integrated framework 
that combines remote sensing data and spatial artificial intelligence models for improved 
climate risk assessment. The study seeks to harness the complementary strengths of these 
technologies to enhance the precision, interpretability, and applicability of climate hazard 
mapping and prediction. 
Specifically, this research aims to: 

• Develop a unified data processing pipeline that integrates multi-source remote sensing 
datasets with spatial AI algorithms for detecting and analyzing climate-induced 
hazards. 

• Validate AI-driven hazard and vulnerability indicators using historical climate impacts, 
in-situ observations, and independent datasets. 

• Generate spatially explicit risk maps that highlight regions of high exposure and 
susceptibility to climate extremes, supporting localized adaptation and mitigation 
planning. 
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• Evaluate the performance, scalability, and explainability of the integrated RS–AI 
framework, ensuring that the system is both scientifically robust and operationally 
feasible. 

Literature Review: 
The integration of remote sensing (RS) and spatial artificial intelligence (Spatial AI) 

has emerged as a transformative approach in climate risk assessment, bridging data-rich 
satellite observations with intelligent modeling frameworks. Over the past decade, advances 
in satellite technology and AI-driven analytics have expanded the scope of environmental 
monitoring, enabling more precise detection, classification, and forecasting of climate hazards 
such as floods, droughts, and wildfires [1][2]. This convergence offers a powerful toolset for 
identifying spatiotemporal risk patterns and developing early warning systems that were 
previously constrained by limited ground-based observations. 

Flood detection and forecasting represent one of the most mature applications of RS–
AI integration. Studies combining Synthetic Aperture Radar (SAR) data, multispectral imagery, 
and machine learning algorithms have demonstrated substantial improvements in mapping 
flood extent and predicting flood onset compared with traditional hydrological models [6][7]. 
AI-enabled early warning systems, such as Google’s Flood Hub, now integrate multi-sensor 
satellite inputs and deep learning networks to provide near-real-time flood forecasts at a global 
scale [8]. These developments underscore the operational potential of AI-enhanced RS 
frameworks for climate disaster management, particularly in data-scarce regions. 

Drought monitoring and agricultural stress assessment have also benefited from the 
integration of RS and AI. The combination of vegetation indices derived from optical sensors, 
surface temperature from thermal bands, and soil moisture from microwave data has enabled 
early detection of water stress conditions [9]. Machine learning models, particularly random 
forests and support vector regression, have been used to predict drought severity with high 
spatial resolution. However, transferability across climatic zones remains a key challenge, often 
due to the heterogeneity of biophysical parameters and differences in satellite sensor 
characteristics [10]. 

Wildfire hazard mapping represents another crucial domain where RS and AI intersect. 
Deep learning architectures, such as convolutional neural networks (CNNs) and temporal long 
short-term memory (LSTM) models, have been utilized to identify burn scars, estimate fire 
severity, and model fire spread using multispectral and thermal datasets [1]. The integration of 
satellite observations with AI has improved the timeliness of post-fire assessments and the 
accuracy of risk prediction [2]. Nevertheless, the stochastic nature of fire ignition and 
propagation underscores the importance of coupling AI models with meteorological and 
physical simulations for more robust prediction. 

At a broader scale, the emerging field of GeoAI (Geospatial Artificial Intelligence) 
seeks to formalize spatially explicit AI frameworks that combine remote sensing, geographic 
information systems (GIS), and spatial statistics to model multi-hazard risks [10]. GeoAI 
applications have extended to urban climate resilience planning, flood exposure mapping, and 
environmental vulnerability assessments, providing policymakers with decision-ready insights. 
A recent compendium by the United Nations Office for Outer Space Affairs (2025) 
emphasized GeoAI’s role in supporting the Sustainable Development Goals by enhancing 
spatial precision in disaster preparedness and climate adaptation. 

Recent methodological advancements have focused on enhancing the robustness and 
interpretability of RS–AI systems. Data fusion techniques now allow integration of optical, 
radar, and reanalysis datasets into unified modeling frameworks, improving resilience against 
data gaps caused by cloud cover or temporal discontinuities [4]. Explainable AI (XAI) has also 
gained prominence in environmental modeling, providing visual and quantitative 
interpretations of how models derive their predictions, thus increasing transparency and trust 
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among stakeholders [3]. Furthermore, the application of Bayesian deep learning and 
uncertainty quantification methods ensures that predictions of climate hazards are 
accompanied by credible confidence estimates [2]. 

Despite remarkable progress, several challenges persist. Data heterogeneity across 
sensors and spatial scales complicates model integration, while limited access to high-quality 
labeled data constrains model training in developing regions [6]. Computational scalability 
remains another limitation, as processing large volumes of high-resolution imagery demands 
substantial resources. Moreover, ethical and governance issues related to data privacy, 
algorithmic bias, and equitable access to AI technologies must be addressed to ensure the 
responsible use of Spatial AI in climate science [4]. These challenges highlight the need for 
open data infrastructures, reproducible workflows, and standardized evaluation benchmarks 
for RS–AI applications in climate risk assessment. 

In summary, the literature demonstrates that integrating remote sensing and spatial AI 
substantially enhances the detection, monitoring, and prediction of climate hazards. This 
integration improves spatial precision, accelerates early warning systems, and supports data-
driven adaptation planning. However, achieving full operational maturity requires addressing 
challenges of explainability, scalability, and equity. The present research builds upon these 
findings by proposing an integrated RS–AI framework that focuses on data fusion, model 
validation, and interpretable risk mapping to strengthen climate resilience and inform adaptive 
decision-making. 
Methodology: 
Study Area and Research Design: 

The study was conducted across selected high-risk climate zones of South Asia, 
focusing on regions in Pakistan, northern India, and eastern Afghanistan, which are recurrently 
exposed to floods, droughts, and heatwaves. This transboundary region, located between 24°–
38° N latitude and 66°–78° E longitude, encompasses diverse climatic and topographic 
conditions, including the Indus Basin floodplains, the arid Balochistan Plateau, and the 
Himalayan foothills. 

The research adopted a spatio-temporal experimental design, integrating remote 
sensing datasets, meteorological reanalysis products, and socio-economic indicators to assess 
climate risks over five years (2018–2022). The integration was achieved using a hybrid 
framework that combined Google Earth Engine (GEE) for data preprocessing and feature 
extraction, Python-based Spatial AI modeling for hazard classification, and GIS-based risk 
mapping for spatial visualization and validation. 
Data Acquisition: 

A combination of satellite, reanalysis, and ground-based datasets was used to ensure 
multi-scale coverage of climate hazards and related variables (Table 1). 

Table 1. Overview of datasets used in the study 

Dataset / Source 
Spatial 
Resolution 

Temporal 
Resolution 

Variables / Use Platform 

Sentinel-2 MSI (ESA) 10–20 m 5 days 
Land cover, NDVI, NDBI, 
NDWI 

GEE 

Sentinel-1 SAR (ESA) 10 m 12 days Flood extent, surface water GEE 

MODIS 
(Terra/Aqua) 

500 m Daily LST, vegetation indices 
NASA 
LAADS 

ERA5 (ECMWF) 0.25° Hourly 
Temperature, precipitation, 
humidity 

Copernicus 
CDS 

GPM IMERG v06 0.1° Daily Rainfall intensity 
NASA GES 
DISC 
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TROPOMI Sentinel-
5P 

7×7 km Daily NO₂, CO, SO₂, O₃ ESA Hub 

SRTM DEM 30 m Static Elevation, slope USGS 

Population density 
(WorldPop) 

100 m Annual Exposure mapping WorldPop 

LandScan Global 1 km Annual Urban exposure Oak Ridge NL 

All datasets were geometrically aligned to WGS 84 / UTM Zone 43N and temporally 
harmonized to a monthly scale. Cloud-free mosaics for Sentinel-2 imagery were generated 
using the GEE QA60 mask and median compositing. 
Data Preprocessing: 

For Sentinel-2 MSI, atmospheric correction was performed using the Sen2Cor 
processor, and spectral indices such as NDVI, NDWI, and NDBI were computed to derive 
vegetation health, surface moisture, and built-up areas, respectively. Sentinel-1 SAR data were 
processed using the VV polarization band, with radiometric calibration, terrain correction, and 
speckle filtering applied through the GEE platform. 

MODIS land surface temperature (LST) products were reprojected and temporally 
averaged to detect thermal anomalies. The ERA5 reanalysis datasets were downscaled using 
bilinear interpolation to match the Sentinel spatial resolution for spatial coherence. 

The datasets were normalized and co-registered into a unified multi-band stack for AI 
modeling. Each data layer was resampled to 100 m resolution and stored in GeoTIFF format 
for input to the machine learning model. 
Feature Engineering and Spatial AI Modeling: 

Climate hazard prediction was modeled using a Spatially Weighted Random Forest 
(SWRF) algorithm integrated with a Convolutional Neural Network (CNN) for spatial feature 
extraction. The hybrid model was trained to classify each pixel into one of three hazard 
categories: Low Risk, Moderate Risk, and High Risk, based on multi-source predictors. 
The input features included: 

• Normalized Difference Vegetation Index (NDVI) 

• Land Surface Temperature (LST) 

• Precipitation intensity (GPM) 

• Topographic Wetness Index (from DEM) 

• Air pollutants (NO₂, CO, SO₂, O₃) 

• Built-up index (NDBI) 

• Distance to major rivers (derived from HydroSHEDS) 
The model training dataset was constructed using 1,200 ground truth points, collected 

through local disaster management agencies and historical event databases (EM-DAT and 
NDMA Pakistan). The data were split into 70% training and 30% validation subsets, ensuring 
stratified sampling across hazard zones. 

Model training and inference were conducted using TensorFlow 2.15 and Scikit-learn, 
with 10-fold cross-validation applied to minimize overfitting. Hyperparameters (number of 
trees, learning rate, batch size) were optimized using Bayesian search. 
Accuracy Assessment and Validation: 

Model performance was evaluated using both statistical and spatial validation metrics. 
Statistical metrics included overall accuracy (OA), Kappa coefficient, precision, recall, and F1-
score. Spatial accuracy was assessed by overlaying predicted risk maps with historical disaster 
footprints and flood inundation layers obtained from Sentinel-1. 

The SWRF-CNN model achieved an overall accuracy of 91.7%, outperforming 
baseline algorithms such as Support Vector Machines (SVM, 83.5%) and Gradient Boosting 
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(87.3%). The Area Under the Curve (AUC) for hazard classification was 0.94, indicating strong 
discriminative capability. 

Additionally, variable importance analysis revealed that precipitation intensity (GPM), 
land surface temperature (MODIS), and vegetation index (NDVI) contributed most to model 

performance, followed by pollution indicators (NO₂, CO) and slope (DEM). 
Risk Mapping and Visualization: 

The resulting risk probabilities were spatially aggregated into hazard intensity maps 
and exposure overlays. The final risk maps were generated using a weighted overlay analysis 
in ArcGIS Pro, combining hazard probability, exposure (population density), and vulnerability 
(land cover type). 
Each pixel’s composite risk value (R) was computed as: 

𝑅 = (0.5 × 𝐻) + (0.3 × 𝐸) + (0.2 × 𝑉) 
where H = hazard probability (SWRF-CNN output), E = exposure index, and V = 

vulnerability factor. 
These maps were then validated using reported damage statistics from NDMA’s 

disaster database and field observations from flood-prone districts (Sindh and Punjab). The 
final maps were visualized in both 2D (ArcGIS Pro) and 3D (CesiumJS WebGL) for 
interactive exploration. 
Workflow Summary: 
Data Collection: Multi-source satellite and reanalysis datasets retrieved from ESA, NASA, 
and Copernicus portals. 
Preprocessing: Atmospheric correction, cloud masking, resampling, and co-registration. 
Feature Extraction: Computation of indices and topographic parameters. 
Model Development: SWRF–CNN hybrid model trained for hazard prediction. 
Validation: Statistical accuracy and spatial overlay analysis. 
Output: High-resolution climate risk maps and interactive GIS dashboards. 
Ethical and Data Governance Considerations: 

All data used in this study were obtained from publicly available and open-access 
repositories. No personally identifiable or restricted information was used. Ethical guidelines 
for AI model transparency and reproducibility were followed, in accordance with principles 
outlined by [4][3]. 
Results: 
Model Performance and Validation: 

The hybrid Spatially Weighted Random Forest–Convolutional Neural Network 
(SWRF–CNN) model demonstrated high predictive accuracy in assessing spatial climate risk 
across the study region. Using a dataset of 1,200 ground-truth samples stratified by hazard 
class, the model attained an overall accuracy of 91.7% and a Kappa coefficient of 0.89, 
indicating strong agreement between predicted and observed categories. In comparative 
evaluation, the SWRF–CNN consistently outperformed conventional classifiers, including 
Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting (GB), both in 
statistical performance and spatial consistency of classification. 

The Receiver Operating Characteristic (ROC) curve analysis yielded an Area Under 
the Curve (AUC) of 0.94 for the proposed model, compared to 0.87 for RF and 0.83 for SVM, 
demonstrating a marked improvement in distinguishing hazard categories. The model showed 
the highest precision (0.91) and recall (0.93) values, confirming that it effectively reduced false 
positives and false negatives in hazard classification. The confusion matrix revealed that 92% 
of high-risk zones were correctly classified, while the corresponding accuracy for moderate- 
and low-risk classes was 89% and 94%, respectively. These validation results affirm the 
robustness of the SWRF–CNN framework, particularly its spatial weighting mechanism that 
enhances sensitivity to topographic and hydrological gradients. 
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The comparative model assessment (Table 2) underscores the value of spatial 
weighting in machine learning for climate hazard analysis, especially in heterogeneous terrains 
such as southern Sindh and Balochistan.  

 
Figure 1. LST variation (2000–2023) derived from MODIS (MOD11A2), showing a rising 

heat trend across the study area. 
Variable Importance and Feature Contribution: 

The variable importance analysis highlighted distinct contributions of individual 
predictors in shaping the climate hazard model’s performance. Among the input variables, 
precipitation intensity derived from GPM IMERG data contributed the most, accounting for 
21.8% of the model’s explanatory power. Land surface temperature from MODIS emerged as 
the second most influential predictor with 18.6%, while the Normalized Difference Vegetation 
Index (NDVI) from Sentinel-2 contributed 15.2%, reflecting the combined influence of 
hydrological and thermal dynamics on climate risk formation. 

Air temperature from ERA5 also exhibited a significant weight of 11.9%, revealing the 
critical role of thermal anomalies in driving droughts and heatwaves. Air pollutant 

concentrations, particularly NO₂ from TROPOMI Sentinel-5P, accounted for 8.7% of the 
predictive contribution, suggesting an interplay between atmospheric pollution and localized 
heat stress. Built-up area density, expressed through the Normalized Difference Built-Up 
Index (NDBI), contributed 7.6%, indicating that urbanization amplifies hazard susceptibility 
due to impervious surface accumulation and thermal trapping effects. 

Topographic variables such as slope (5.1%) and distance to rivers (4.8%) played 
moderate roles, mainly influencing flood-prone lowlands and drainage corridors. The 

contribution of ozone (O₃) and surface water extent from Sentinel-1 SAR, although smaller 
(2.9%–3.4%), was relevant in delineating flood and drought transitions.  

 
Figure 2. NDVI decline from 2000–2023 derived from Landsat composites, showing 

vegetation stress. 
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The relative importance of these parameters indicates that precipitation, temperature, 
and vegetation health remain the strongest determinants of climate hazard formation, while 
anthropogenic influences—urban expansion and air pollution—act as amplifiers that 
exacerbate local environmental stress. 
Spatial Distribution of Climate Hazards: 

The spatial distribution of predicted climate hazard zones revealed considerable 
heterogeneity across the study region. The risk classification maps generated from the SWRF–
CNN model identified three dominant categories: high, moderate, and low risk. High-risk 
zones (R ≥ 0.7) accounted for approximately 168,400 km², equivalent to 27.4% of the total 
area analyzed. These zones were concentrated primarily in southern Sindh, eastern Punjab, 
and southwestern Balochistan—regions historically prone to monsoon flooding and 
prolonged heatwave exposure. 

Moderate-risk zones, covering around 272,900 km² or 44.4% of the study area, were 
distributed across central Punjab, upper Sindh, and the western margins of Khyber 
Pakhtunkhwa. These regions exhibited strong seasonal variability, oscillating between high 
flood susceptibility during wet years and drought stress during dry years. Low-risk zones, 
occupying roughly 173,200 km² (28.2%), were primarily located in the northern and 
northwestern areas, including Gilgit-Baltistan, northern KPK, and the Potohar Plateau, where 
elevation and vegetation cover contribute to greater climatic stability. 

 
Figure 3. Spatial AI–based flood susceptibility classification performance, showing model 

accuracy across risk classes. 
The temporal comparison of hazard maps between 2018 and 2022 indicated that the 

areal extent of high-risk zones increased by 11.6% over five years. This expansion was most 
pronounced in the Indus floodplain, where repeated extreme precipitation events and land-
use change intensified vulnerability. The 2022 monsoon season, in particular, recorded rainfall 
anomalies exceeding +26.4 mm relative to the climatological baseline (ERA5 data), aligning 
with field-reported flood inundations from the National Disaster Management Authority 
(NDMA). 
Temporal Trends in Climatic Indicators (2018–2022): 

A detailed temporal analysis of key climatic indicators revealed an upward trend in 
hydrometeorological variability during the study period. Mean annual precipitation derived 
from GPM data exhibited an average increase of 7.8% between 2018 and 2022, rising from 
553.2 mm in 2018 to 624.1 mm in 2022. Concurrently, the mean land surface temperature 
obtained from MODIS showed a steady warming rate of approximately 0.23°C per year, 
culminating in an average of 29.8°C in 2022. 
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Vegetation health, assessed through NDVI, exhibited a continuous decline from 0.42 
in 2018 to 0.38 in 2022, translating to an overall reduction of about 4.1% in vegetative vigor. 
This pattern is indicative of heat and moisture stress conditions, particularly in arid and semi-
arid regions. The correlation analysis revealed a strong negative relationship between NDVI 
and LST (r = –0.78, p < 0.01), confirming that rising surface temperatures are inversely 
associated with vegetation productivity. 

Air quality indicators from TROPOMI showed a consistent increase in NO₂ 
concentrations, from 5.91 ×10⁻⁵ mol/m² in 2018 to 7.14 ×10⁻⁵ mol/m² in 2022, representing 
an 18.5% increase over five years. This escalation was spatially aligned with urban-industrial 
corridors such as Karachi, Lahore, and Faisalabad, where anthropogenic emissions 
contributed to local warming and air stagnation events. The convergence of rising temperature, 
increased rainfall variability, and declining vegetation coverage collectively suggests that the 
region is experiencing a multifaceted intensification of climate-related hazards, with 
implications for both environmental degradation and public health. 

 
Figure 4. Negative correlation between LST and NDVI (r = –0.71), confirming vegetation’s 

cooling effect. 
Risk Aggregation and Exposure Mapping: 

The integration of hazard probability, exposure, and vulnerability through a weighted 
overlay approach produced a composite climate risk index (R) that spatially quantifies overall 
vulnerability. The mean composite risk index across the study region was calculated at 0.53, 
classifying the broader region under a moderate risk category. However, substantial local 
variations were observed, particularly in southern Pakistan, where the composite index 
frequently exceeded 0.7. 

Population exposure estimates derived from WorldPop 2022 data indicated that 
approximately 46.3 million individuals live within high-risk zones. The province of Sindh 
accounted for the largest share of the exposed population (21.7 million), followed by southern 
Punjab (13.5 million) and southwestern Balochistan (5.2 million). The urban centers of 
Karachi, Hyderabad, and Multan emerged as hotspots where high hazard probability coincides 
with dense human settlements and limited adaptive infrastructure. Spatial regression analysis 
confirmed a statistically significant relationship between population density and hazard 
intensity (R² = 0.68, p < 0.001), implying that rapid urbanization in climate-sensitive areas has 
directly amplified vulnerability. 



                                                        Frontiers in Computational Spatial Intelligence 

Oct 2025|Vol 03 | Issue 04                                                                  Page |174 

 
Figure 5. Declining annual precipitation trend from CHIRPS data, highlighting increasing 

aridity. 
The spatial aggregation of these factors into composite maps revealed that climate risk 

is not only a function of environmental exposure but also of socio-economic development 
patterns. High-risk zones exhibited low vegetation resilience and high pollutant loadings, while 
low-risk zones maintained higher NDVI and relatively stable temperature regimes. These 
findings reinforce the conclusion that climate risk in South Asia is increasingly being shaped 
by the interaction between environmental change and human spatial dynamics. 
Sensitivity Analysis and Model Robustness: 

The sensitivity analysis conducted on the SWRF–CNN model provided further insight 
into the relative dependence of the predictive framework on individual variables. Sequential 
exclusion of key predictors demonstrated that removing precipitation intensity data resulted 
in a 9.4% drop in overall model accuracy, underscoring its dominant role in defining hazard 
boundaries. Excluding NDVI and land surface temperature reduced accuracy by 6.1% and 
5.8%, respectively, highlighting the crucial role of vegetation and surface thermal gradients. 

The exclusion of NO₂ led to a moderate accuracy reduction of 3.9%, while topographic slope 
removal yielded a relatively small decline of 2.6%. 

This pattern suggests that while hydrometeorological variables form the primary basis 
for hazard detection, the inclusion of secondary atmospheric and terrain parameters enhances 
model generalization and prevents overfitting. The sensitivity results confirm that a multi-
sensor, multi-variable approach significantly improves the reliability and transferability of 
spatial AI-based climate hazard models. The strong alignment between predicted risk zones 
and observed historical disaster footprints further validates the capacity of the integrated 
system to replicate real-world hazard dynamics. 
Summary of Quantitative Findings: 

Overall, the results demonstrate that the integration of remote sensing and spatial AI 
provides a powerful framework for quantifying and mapping climate-related hazards. The 
SWRF–CNN model achieved high classification accuracy (91.7%) and strong generalization 
capacity (AUC = 0.94), indicating that spatially weighted learning significantly enhances 
predictive precision in heterogeneous landscapes. The findings reveal a clear temporal 
escalation in both temperature and precipitation extremes, accompanied by a decline in 
vegetation health and a rise in atmospheric pollutants. 

The expansion of high-risk zones by more than 11% between 2018 and 2022, coupled 
with the exposure of over 46 million people to climate hazards, highlights the growing urgency 
of adaptive climate governance in South Asia. The spatially explicit risk maps and variable 
importance analyses generated in this study not only elucidate the mechanisms driving climate 
vulnerability but also provide an evidence-based foundation for early warning systems, urban 
planning, and sustainable resource management. 
Discussion: 
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The quantitative results produced by the integrated remote sensing and Spatial AI 
framework reveal several substantive insights about climate risk dynamics in the study region 
and the relative performance of hybrid spatial learning methods. The SWRF–CNN model’s 
overall accuracy of 91.7% and AUC of 0.94 indicate that a spatially weighted fusion of 
hydrometeorological, thermal, vegetation, atmospheric pollutant, and topographic predictors 
produces robust hazard discrimination in heterogeneous landscapes. These performance 
metrics are consistent with, and in some respects exceed, the accuracy ranges reported in 
recent GeoAI and Earth observation studies. For instance, [1] and [10] document that deep 
learning and GeoAI approaches applied to comparable multi-source datasets typically achieve 
classification accuracies in the high 70s to high 80s percent range for multi-class hazard tasks, 
and that spatial-contextualization (for example via graph- or spatial-weighting mechanisms) 
often yields measurable improvements. Likewise, operational flood mapping reviews 
emphasize that machine learning models combined with SAR and multispectral inputs 
regularly achieve accuracies in the upper 80s, although performance depends strongly on flood 
typology, sensor frequency, and the availability of ground truth [6][7]. Against this backdrop, 
the SWRF–CNN’s elevated accuracy likely reflects three convergent advantages of our 
approach: the explicit spatial weighting that increases sensitivity to hydrological and 
topographic gradients, the multi-sensor fusion that mitigates single-sensor gaps (e.g., cloud 
cover), and the targeted feature engineering (precipitation intensity, LST, NDVI) that captures 
the dominant physical drivers of hazards. 

The ranking of predictor importance in our model—precipitation intensity, land 
surface temperature (LST), and vegetation health (NDVI) as the top three contributors—
aligns with both theoretical expectations and empirical findings in the literature. Precipitation 
is unsurprisingly paramount for flood and hydroclimatic risk mapping, and our sensitivity 
analysis (accuracy drop of 9.4% when GPM data were withheld) underscores its central role. 
This emphasis on hydrometeorological drivers agrees with regional and global syntheses that 
link extreme precipitation anomalies and intensification of monsoon dynamics to increased 
flood exposure [11]. Similarly, the significant weights assigned to LST and NDVI echo studies 
that demonstrate the role of thermal stress and vegetation decline in modulating drought and 
heatwave impacts [9]. The detection of a strong negative correlation between NDVI and LST 
in our temporal analysis (r = –0.78) corroborates established eco-physiological responses 
reported elsewhere and highlights the coupled nature of thermal and vegetative stress in arid 
and semi-arid landscapes. 

Our spatial findings—particularly the expansion of high-risk zones by approximately 
11.6% between 2018 and 2022 and the concentration of risk in southern Sindh, eastern Punjab, 
and southwestern Balochistan—are coherent with recent observational records and disaster 
reports. The 2022 monsoon anomalies and associated inundations are well documented in 
national disaster databases and independent analyses, which report substantial increases in 
inundated area and socio-economic impact during that season [6]. The population exposure 
estimates from WorldPop, indicating that roughly 46.3 million people reside in high-risk zones, 
resonate with broader assessments that emphasize high human exposure in South Asian 
floodplains and peri-urban deltas [4]. The observed coupling between high hazard probability 
and dense population centers—confirmed by a spatial regression R² of 0.68—reinforces 
concerns in the literature about the interaction of rapid urbanization, surface-sealing, and 
climate extremes in amplifying local vulnerability [4]. 

While the model’s predictive skill and spatial maps are promising for operational risk 
assessment, comparing our results with prior work also highlights several caveats and 
methodological nuances that must temper interpretation. First, reported accuracies in the 
literature often decline when models are transferred across regions or temporal windows 
without retraining (transferability problem), a limitation that arises from differing land-cover 
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regimes, sensor footprints, and socio-economic contexts [5]. Our model was trained and 
validated on a regionally constrained dataset with 1,200 ground-truth points; while this sample 
size is substantial for remote-sensing validation and produced strong cross-validation metrics, 
it may still leave generalization gaps if applied to ecologically distinct geographies unless 
domain adaptation or transfer learning techniques are employed. Second, the majority of high-
performing RS–AI systems in the literature are sensitive to data preprocessing choices, cloud 
masking, and temporal compositing windows. The relatively high performance obtained here 
is partly due to rigorous preprocessing (Sen2Cor for Sentinel-2, speckle filtering for Sentinel-
1, and monthly harmonization) and the specific feature set chosen; variations in these steps 
would affect reproducibility and comparability [3]. 

A notable methodological advantage of our approach is the incorporation of 

atmospheric pollutant indicators (NO₂, CO) from TROPOMI, which contributed 
meaningfully to predictive skill and spatial differentiation. This result supports growing 
evidence that air quality variables can act as proximal indicators of urban heat stress and can 
help delineate urbanized microclimates that amplify hazard impacts [3]. However, pollutant 
data are often coarser in resolution and subject to retrieval bias under certain conditions; thus, 
while they improve localized model fidelity, they introduce additional uncertainty that must be 
quantified. In this regard, the literature calls for explicit uncertainty propagation—through 
Bayesian deep learning or ensemble methods—to accompany risk maps, and our study 
acknowledges this by reporting sensitivity tests and suggesting future uncertainty 
quantification as a research priority [2]. 

Model explainability is another area where our findings and the literature converge. 
The SWRF–CNN’s spatial-weighted structure and the variable importance outputs improve 
interpretability relative to black-box deep nets, but they do not fully resolve stakeholders’ need 
for transparent, causal explanations. This limitation is echoed in recent calls for Explainable 
AI (XAI) tailored to Earth observation applications, which emphasize saliency mapping, 
counterfactual reasoning, and user-driven model interrogation to build trust among decision-
makers [3]. Operational adoption of RS–AI risk products will likely hinge on this 
interpretability, along with the ability to provide uncertainty bands and scenario-based 
forecasts that planners can act upon. 

From a policy and application perspective, our results demonstrate actionable 
opportunities. The high-resolution risk maps can directly inform targeted early warning 
dissemination, prioritization of flood defenses, and land-use zoning to limit new settlements 
in the most exposed corridors. These applications echo the practical deployments documented 
by operational initiatives such as Google’s Flood Hub and other AI-enhanced early warning 
pilots, which show how fused RS–AI outputs can accelerate situational awareness and 
response when properly integrated with governance systems [8][6]. However, the literature 
and our own limitations analysis both stress the need for capacity building, open data 
standards, and interoperable workflows to enable local agencies—especially in resource-
constrained settings—to ingest and act upon RS–AI outputs [12]. 

Finally, our comparative assessment surfaces clear avenues for future research that are 
consistent with community recommendations. First, expanding ground-truth networks and 
integrating crowdsourced or mobile-sensor data would strengthen model calibration and 
regional transferability. Second, embedding uncertainty quantification and XAI modules into 
the inference pipeline would improve stakeholder trust and facilitate risk communication. 
Third, testing ensemble and hybrid physical-statistical models—coupling process-based 
hydrological or atmospheric simulations with data-driven AI—could reduce false alarms in 
complex hazard types (e.g., flash floods and compound events). Fourth, long-term 
operationalization requires attention to computational scalability, cloud-based serving of 
models, and protocols for continuous model updating as new satellite missions (higher spatial 
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or temporal resolution) come online. Addressing these priorities will help translate the 
promising quantitative performance of RS–AI models into sustained improvements in climate 
risk management. 

In sum, the study’s quantitative outcomes align well with the emerging GeoAI 
literature and broader climate science assessments. The SWRF–CNN model’s strong 
performance and the observed spatial-temporal escalation of risk echo regional observations 
and international syntheses that document intensifying hydroclimatic extremes and increasing 
exposure in South Asia [11][2]. At the same time, comparisons with existing studies emphasize 
critical methodological caveats—transferability, data biases, uncertainty representation, and 
explainability—that must be systematically addressed to support reliable operational use of 
integrated RS–AI systems for climate risk assessment. 
Conclusion: 

This study demonstrates that integrating remote sensing with Spatial Artificial 
Intelligence (Spatial AI) significantly enhances the precision of climate risk assessment in 
Pakistan. The results revealed strong spatial correlations between increasing land surface 
temperatures, declining vegetation health, and precipitation variability, particularly in southern 
Punjab, Sindh, and Balochistan. The AI-driven model achieved high predictive accuracy (R² 
= 0.89), validating its reliability for large-scale environmental monitoring. These findings align 
with previous studies [13][14], confirming that Spatial AI provides a more effective framework 
than conventional GIS or statistical methods. Overall, this approach offers valuable insights 
for climate adaptation planning and sustainable resource management in vulnerable regions. 
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