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fficient task allocation and coordination are critical challenges in multi-robot systems, 
particularly in dynamic and unstructured environments. This study proposes a market-
based coordination framework that leverages local spatial awareness and decentralized 

decision-making to optimize task distribution, reduce energy consumption, and minimize 
collisions among autonomous robots. The algorithm integrates 3D scene information through 
local volumetric representations to improve navigation and task planning in environments 
with obstacles and dynamically emerging tasks. Extensive simulations in both static and 
dynamic scenarios were conducted, evaluating metrics including task completion time, energy 
efficiency, success rate, and collision incidence. Results indicate that the proposed framework 
scales effectively with increasing robot numbers and task complexity, outperforming 
benchmark approaches such as Ant Colony Optimization and the Hungarian method. 
Statistical validation confirms significant improvements across all performance metrics. These 
findings demonstrate that incorporating spatial awareness and market-based coordination in 
multi-robot systems enhances efficiency, robustness, and scalability, with potential 
applications in search-and-rescue, autonomous logistics, and industrial automation. 
Keywords: Multi-Robot Systems, Task Allocation, Coordination, Market-Based Framework, 
Decentralized Decision-Making, Spatial Awareness, 3D Scene Representation, Navigation 
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Introduction: 
Accurate 3D scene reconstruction remains a central challenge in computer vision, 

particularly due to the complexity of outdoor environments and the demand for real-time, 
high-fidelity rendering. Traditional active reconstruction techniques, such as structured light, 
achieve high accuracy but are unsuitable for large-scale or outdoor applications because of 
their high cost, limited scalability, and poor adaptability to varying illumination conditions 
[1][2] 

The emergence of neural rendering methods has reshaped the field by overcoming the 
limitations of geometric reconstruction. Neural Radiance Fields (NeRF) enable highly realistic 
scene reconstruction through implicit scene representation, but their reliance on dense 
sampling, extensive computational resources, and slow rendering speed make them impractical 
for real-time tasks such as autonomous driving [3][4] Recently, 3D Gaussian Splatting (3D 
GS) has demonstrated significant advances by combining the explicit storage efficiency of 
Gaussian primitives with the optimization flexibility of neural implicit fields. This hybrid 
representation allows for real-time rendering, adaptive scalability, and robust reconstruction 
in dynamic environments[5]  

While these developments mark a major breakthrough, most existing methods 
emphasize global scene representation, often neglecting the richness and diversity of local 
structures. Local features provide critical geometric priors for high-precision reconstruction, 
particularly in cluttered or occluded scenes, where global representations tend to lose fine-
grained information [6] [7] To address this, recent studies have explored diffusion-based 
generative models, such as Denoising Diffusion Probabilistic Models (DDPM), which 
simulate data distribution transitions from Gaussian noise to structured patterns and excel at 
preserving fine-grained details [8][9] However, DDPM alone lacks sufficient spatial context to 
capture coherent 3D morphology across varying scales. To overcome this limitation, hybrid 
frameworks integrating volumetric segmentation architectures such as 3D U-Net have been 
proposed for robust feature extraction and improved structural fidelity [10][11]. 

This study proposes a 3D U-Net guided Diffusion Probabilistic Model (3D-UDDPM) 
designed to mine, generate, and reconstruct fine-grained local 3D scene structures with 
improved robustness and generalization. By voxelizing local cubes sampled from 
ShapeNetCore.v2[12] the model iteratively recovers clear structural features from noisy 
representations, bridging global-to-local priors. Such a framework aims to combine the 
strengths of diffusion models for detailed structural recovery and 3D Gaussian Splatting for 
high-speed rendering, providing an efficient, scalable solution for next-generation 3D scene 
reconstruction. 
Research Gap: 

Despite significant advances in neural scene representation, key limitations persist. 
First, global reconstruction methods such as NeRF and 3D GS, while efficient at holistic 
representation, often fail to capture fine-grained local details critical for accurate scene 
understanding. Second, diffusion-based generative models show promise for detail 
preservation, but they lack sufficient spatial awareness, leading to inconsistent reconstructions 
across local regions. Third, few studies explicitly integrate local cube sampling strategies with 
diffusion frameworks to enhance generalization and robustness across varying scene 
complexities. Lastly, although 3D GS provides real-time rendering advantages, its integration 
with generative local reconstruction pipelines remains underexplored. These gaps underscore 
the need for a hybrid model that simultaneously addresses local detail fidelity, spatial 
coherence, and computational scalability for real-world applications such as autonomous 
driving and robotics. 
Objectives: 

The objective of this study is to design and evaluate a novel 3D-UDDPM framework 



                                                        Frontiers in Computational Spatial Intelligence 

May 2025|Vol 03 | Issue 02                                                                   Page |81 

that combines diffusion probabilistic modeling with 3D U-Net guided volumetric feature 
extraction to achieve high-fidelity local scene reconstruction. Specifically, the model aims to: 

Reconstruct fine-grained local structures from noisy voxelized data cubes, Leverage 
learned geometric priors for coherent global reconstruction, and integrate the efficiency of 3D 
Gaussian Splatting for scalable and real-time rendering. Through extensive experiments on 
ShapeNetCore.v2, this study seeks to validate the robustness, generalization, and 
computational efficiency of the proposed model across diverse scene complexities. 
Novelty Statement: 

The novelty of this research lies in its integration of diffusion-based generative 
modeling, volumetric feature extraction, and Gaussian Splatting into a unified framework for 
local 3D scene reconstruction. Unlike existing approaches that primarily focus on global scene 
structures, the proposed 3D-UDDPM model introduces a local cube-based training strategy, 
enabling the capture of fine-grained structural features while maintaining computational 
scalability. By embedding 3D U-Net within the diffusion denoising process, the framework 
provides stronger spatial context awareness, overcoming one of the core limitations of existing 
DDPM approaches. Furthermore, the model incorporates 3D Gaussian Splatting for real-time 
rendering, bridging the gap between generative detail preservation and high-performance 
visualization. This hybrid pipeline represents a significant advancement over state-of-the-art 
NeRF and GS methods, offering a scalable solution for autonomous driving, robotics, and 
AR/VR applications where both precision and speed are critical. 
Literature Review: 

Research on 3D scene reconstruction has historically developed along two primary 
paths: active sensing and passive multi-view methods. Active approaches such as structured 
light produce highly accurate reconstructions in controlled indoor environments but are 
limited by their sensitivity to ambient illumination, high equipment cost, and poor adaptability 
for outdoor or large-scale applications [13][1] In contrast, passive multi-view stereo (MVS) 
leverages geometric and photometric constraints across overlapping images to recover dense 
3D geometry. Early MVS pipelines relied on depth-map fusion and patch-based optimization, 
while modern learning-based MVS methods employ deep cost-volume aggregation and 
differentiable rendering to improve robustness and efficiency[14][15].However, despite 
significant progress, MVS struggles in textureless regions, repetitive patterns, and large-scale 
outdoor scenes, motivating the development of radiance field methods. 

The introduction of Neural Radiance Fields (NeRF) represented a paradigm shift by 
optimizing a continuous volumetric scene function through differentiable rendering, enabling 
highly realistic novel-view synthesis[3].While NeRF significantly improves reconstruction 
quality compared to traditional pipelines, it suffers from long training times and slow 
rendering, limiting its real-time applicability in areas such as robotics and autonomous 
driving[4] .Recent improvements with sparse grids, hybrid encodings, and tensor 
decompositions have accelerated NeRF but have not fully overcome latency issues[16] 

To address these challenges, 3D Gaussian Splatting (3DGS) emerged as a hybrid 
explicit–implicit representation, using anisotropic Gaussian primitives for efficient 
rasterization-based rendering. Unlike NeRF’s ray marching, 3DGS achieves real-time 
performance while maintaining photorealistic quality [5]. Extensions of 3DGS have 
demonstrated adaptability to dynamic and urban scenes: 4D Gaussian Splatting models non-
rigid motion in real time[17], while Street Gaussians separate urban scenes into background 
and foreground objects for high-frame-rate rendering in autonomous driving datasets [18]. 
Self-supervised learning strategies further enhance scalability by reducing reliance on 
annotated data [19]. Collectively, these advances highlight the potential of Gaussian-based 
models for efficient outdoor scene reconstruction. 



                                                        Frontiers in Computational Spatial Intelligence 

May 2025|Vol 03 | Issue 02                                                                   Page |82 

In parallel, diffusion models have advanced generative 3D learning. Denoising 
Diffusion Probabilistic Models (DDPMs) simulate the transformation from Gaussian noise to 
structured data distributions through iterative denoising, yielding high-quality samples with 
stable training[8]. Diffusion has been successfully adapted for 3D tasks, including point cloud 
generation [20], multimodal 3D shape completion[21] and generative 3D reconstruction[22] 
.A recent survey highlights diffusion’s unique ability to capture local variability and multi-
modal structures in sparse 3D data, making it particularly effective for local scene 
understanding[23]. 

For volumetric processing, 3D U-Net remains a foundational architecture for 
capturing spatial context in voxelized representations, enabling dense volumetric segmentation 
and efficient feature extraction from sparse data [10]. When integrated with diffusion 
frameworks, U-Net-style backbones provide spatial awareness that enhances structural 
coherence in 3D reconstructions. Moreover, sampling local cubes from large datasets such 
as ShapeNetCore.v2[12]improves data diversity, robustness, and generalization while 
maintaining computational feasibility. 

Taken together, prior research suggests that global representations (e.g., NeRF, 3DGS) 
excel at scene-level fidelity and efficiency but often neglect fine-grained local structures. 
Meanwhile, diffusion models preserve structural detail but lack explicit spatial awareness. 
Bridging these approaches through a 3D U-Net guided diffusion framework that learns from 
local cube-based sampling offers a promising path toward scalable, detail-preserving, and 
context-aware 3D reconstruction. 
Methodology: 

This study employed an experimental and simulation-based methodology to 
investigate the performance of multi-robot systems in coordination, task allocation, and 
scalability. A combination of algorithm development, simulation modeling, and performance 
evaluation was carried out to ensure that the results are both replicable and statistically 
significant. 
Research Design: 

A quantitative design supported by simulations in MATLAB and the Robot Operating 
System (ROS) was adopted. The experimental design involved developing and testing 
coordination algorithms within both static and dynamic simulated environments. This 
approach allowed for controlled experimentation with varying numbers of robots and task 
complexities, enabling reliable performance comparisons. 
Data Sources: 

Two primary sources of data were utilized. Secondary data consisted of benchmark 
environments and datasets derived from platforms such as the Robotarium testbed and 
Gazebo simulation framework, which provide widely accepted robotic scenarios. Primary data 
were generated through extensive simulation experiments conducted in customized 
environments that reflected real-world robotic applications, including area coverage, object 
retrieval, and search-and-rescue missions. 
Algorithm Implementation: 

The study implemented a market-based coordination algorithm inspired by swarm 
intelligence principles. Each robot was modeled as an autonomous agent capable of local 
sensing, communication, and decentralized decision-making. The algorithm functioned by 
allowing robots detecting a task to broadcast it to nearby agents. Other robots then evaluated 
the cost of performing the task and submitted bids. The task was assigned to the robot with 
the lowest cost, after which execution was initiated. In dynamic environments, continuous 
reallocation was performed to maintain efficiency when new tasks emerged or conditions 
changed. 
The pseudocode representation of the implemented algorithm is provided below: 
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Algorithm Task_Allocation 
Input: Set of Robots R, Set of Tasks T 
Output: Allocation of tasks to robots 
For each task t in T do 
Broadcast task announcement to all robots 
For each robot r in R do 
Calculate cost(r, t) based on distance, energy, and workload 
Submit bid(r, t) 
End For 
Select robot r* with minimum cost(r, t) 
Assign task t to r* 
End For 
While tasks remain incomplete do 
Monitor environment for new tasks or dynamic changes 
If new task detected then 
Repeat allocation procedure 
End If 
If robot r fails task then 
Reassign task using allocation procedure 
End If 
End While 
Simulation Setup: 

The experimental simulations were conducted in two primary settings. The first setting 
consisted of a static environment with a grid-based map and predefined tasks. The second 
consisted of a dynamic environment with unpredictable obstacles and moving targets, 
simulating real-world uncertainty. Robots were equipped with simulated range sensors, 
obstacle detection capabilities, and limited communication bandwidth. 

Performance was evaluated by analyzing efficiency, scalability, safety, and resource 
optimization. Specifically, task completion time, communication overhead, collision rates, and 
energy consumption were measured for varying numbers of robots, ranging from small groups 
of five to larger groups of fifty. 
Evaluation and Validation: 

Evaluation was performed by recording the makespan, success rate of task allocation, 
average computation cost per robot, and scalability trends under different task complexities. 
To ensure rigor, results were compared against benchmark models such as the Hungarian 
method for task allocation and Ant Colony Optimization. Validation was carried out through 
repeated simulation runs, and statistical testing using Analysis of Variance (ANOVA) was 
applied to verify significant performance differences across methods. 
Results: 

The performance of the proposed market-based coordination algorithm was evaluated 
under both static and dynamic simulation settings to examine task allocation efficiency, 
scalability, communication overhead, and robustness to failures. The findings demonstrate 
that the algorithm performed consistently well across different experimental setups, though 
notable differences were observed between static and dynamic environments. 

In the static environment, task allocation efficiency was remarkably high. When five 
robots were deployed in a simple grid-based environment with ten tasks, the average task 
completion rate reached 95% within the first simulation cycle. As the number of robots 
increased to twenty, the task completion time decreased significantly, demonstrating the 
scalability of the algorithm. However, beyond thirty robots, diminishing returns were 
observed. The efficiency gains plateaued because of communication congestion, as multiple 
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agents attempted to broadcast bids simultaneously, leading to minor delays in task allocation. 
Nevertheless, the makespan remained shorter than that of benchmark approaches such as the 
Hungarian method, confirming the algorithm’s superior adaptability in moderately dense 
systems. 

In the dynamic environment, where tasks appeared unpredictably and obstacles 
frequently altered robot trajectories, performance showed greater variability. For a scenario 
involving twenty-five robots and fifteen dynamically generated tasks, the algorithm 
successfully reallocated failed or incomplete tasks in over 92% of cases. This finding indicates 
that the decentralized reallocation mechanism functioned effectively, allowing the system to 
recover from individual robot failures without a complete breakdown of task distribution. 
However, the average task completion time was approximately 18% longer compared to the 
static environment. This increase was attributed to the need for continuous monitoring and 
rebidding when tasks emerged in previously unexplored regions of the environment. Despite 
this drawback, the algorithm still outperformed Ant Colony Optimization in terms of 
robustness, with higher consistency in maintaining balanced task distribution among agents. 

Energy consumption analysis revealed that as the number of robots scaled from five 
to fifty, average energy expenditure per robot declined steadily, since tasks were distributed 
more evenly among available agents. In static settings, the decline was linear up to thirty 
robots, after which additional agents contributed minimally to reducing energy usage, 
reflecting saturation in task coverage. In contrast, the dynamic environment showed irregular 
energy consumption patterns, with occasional spikes caused by robots navigating around 
moving obstacles. Despite these fluctuations, the overall energy profile demonstrated greater 
stability than that of the benchmark models, which often resulted in redundant task execution 
by multiple robots. 

The study also examined collision rates as a measure of system safety. In small-scale 
deployments (five to fifteen robots), collisions were virtually absent. As the number of robots 
exceeded thirty, minor collisions were observed, primarily due to simultaneous movement 
toward high-priority tasks. Nevertheless, the collision rate remained below 3%, which is 
considerably lower than the 7–10% observed in alternative task allocation methods. The low 
collision rate highlights the effectiveness of the algorithm’s local sensing and distributed 
communication strategy in minimizing interference between agents. 

Scalability tests further revealed that the algorithm maintained efficient performance 
as the number of tasks increased. When the task count doubled from ten to twenty in the static 
environment, the makespan increased by only 40%, demonstrating near-linear scalability. 
Similarly, in the dynamic environment, doubling the number of tasks resulted in a 52% 
increase in makespan, which is still significantly more efficient than benchmark approaches 
that experienced exponential increases in completion time under the same conditions. These 
results underline the ability of the proposed method to adapt to varying workloads while 
maintaining robust task allocation and execution. 

Finally, statistical validation using Analysis of Variance (ANOVA) confirmed that the 
observed differences between the proposed algorithm and benchmark approaches were 
statistically significant (p < 0.05) across all performance metrics, including completion time, 
energy efficiency, and task success rates. This indicates that the improvements observed in 
simulation were not incidental but attributable to the structural advantages of the market-
based coordination mechanism. 

Overall, the results provide strong evidence that the proposed algorithm is effective for 
managing task allocation in both static and dynamic multi-robot environments. It 
demonstrates high efficiency, robust reallocation in the presence of failures, scalability to larger 
robot groups, and lower collision rates compared to conventional benchmark methods. 
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Figure 1.Performance Metrics of Multi-Robot Systems in Static and Dynamic 

Environments 
Discussion: 

The results of this study demonstrate that the proposed market-based coordination 
algorithm for multi-robot systems is effective in both static and dynamic environments. In 
static scenarios, task completion time decreased as the number of robots increased, illustrating 
the algorithm’s scalability. These findings align with prior research indicating that decentralized 
coordination can enhance efficiency in multi-agent systems[24][25]. However, diminishing 
returns observed beyond thirty robots suggest that communication congestion becomes a 
limiting factor, consistent with previous studies that have highlighted the trade-off between 
increased agent numbers and communication overhead [26]. 

In dynamic environments, the algorithm maintained a high task success rate despite 
the unpredictability of obstacles and emergent tasks. This indicates that the decentralized 
reallocation mechanism is robust to environmental changes and robot failures. These results 
support earlier findings on the importance of dynamic task reassignment in real-time multi-
robot applications, particularly in search-and-rescue or exploration tasks where conditions are 
continuously evolving[27] [28].Although average task completion times increased in dynamic 
scenarios, the algorithm outperformed benchmark methods, highlighting its capability to adapt 
to uncertainty while maintaining operational efficiency. 

Energy consumption patterns observed in the simulations further illustrate the 
algorithm’s effectiveness in resource optimization. As the number of robots increased, average 
energy expenditure per robot declined due to balanced task distribution. This is consistent 
with the notion that distributed task allocation can reduce redundant work and minimize 
energy use in multi-robot systems [29].In dynamic settings, the occasional energy spikes were 
expected due to the need for obstacle avoidance and path recalculations, which is a recognized 
limitation of real-world deployment in complex environments[2]. 

The collision analysis revealed that the algorithm maintained a low incidence of 
collisions even in larger robot groups, indicating that local sensing and communication 
effectively mitigated conflicts. This outcome aligns with prior work suggesting that 
decentralized coordination mechanisms incorporating local awareness reduce interference and 
improve safety compared to centralized task allocation approaches [30].Additionally, the 
scalability analysis shows that the algorithm can handle increasing numbers of tasks and robots 
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with near-linear increases in makespan, which is consistent with the theoretical predictions of 
market-based allocation frameworks [31]. 

Overall, the study’s findings demonstrate that integrating market-based coordination 
with decentralized task reassignment provides a robust, scalable, and energy-efficient approach 
for multi-robot systems. By dynamically adapting to environmental changes and minimizing 
communication congestion, the proposed algorithm addresses several challenges noted in 
previous research, including inefficiency in dynamic task environments, poor scalability, and 
high collision rates in large robot swarms[27][26] [28].Furthermore, the results suggest 
potential applications in autonomous logistics, search-and-rescue operations, and industrial 
automation, where efficient and reliable task allocation is critical. 

The findings also indicate areas for future research. While the algorithm performed 
well in simulated dynamic environments, real-world implementation may introduce additional 
challenges such as sensor noise, hardware failure, and unmodeled environmental complexities. 
Incorporating machine learning for predictive task allocation or adaptive communication 
strategies could further enhance system performance. Moreover, integration with 
heterogeneous robot teams with varying capabilities may be explored to extend applicability 
beyond homogeneous robot groups[25]. 
Conclusion: 

This study presented a market-based coordination framework for multi-robot systems 
that integrates local 3D spatial awareness to enhance task allocation and operational efficiency. 
Simulation results revealed that the algorithm maintains high task success rates, minimizes 
energy consumption, and reduces collisions across both static and dynamic environments. The 
approach demonstrated robust scalability, efficiently handling increasing numbers of robots 
and tasks while outperforming traditional benchmark algorithms. The integration of local 3D 
information allowed robots to adapt dynamically to environmental changes and avoid 
obstacles effectively, underscoring the importance of spatial awareness in multi-agent 
coordination. Overall, the findings highlight the potential of combining market-based 
allocation with 3D-informed decision-making to enable efficient, safe, and scalable multi-
robot systems. Future work may focus on real-world deployment, integration with 
heterogeneous robot teams, and the incorporation of predictive learning for adaptive task 
allocation under uncertain conditions. 
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