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he increasing adoption of agricultural robotics has highlighted the need for efficient and 
reliable trajectory planning in crop fields. Traditional methods often optimize either 
global coverage or local obstacle avoidance but fail to achieve both simultaneously in 

dynamic agricultural environments. This study presents an integrated trajectory planning 
framework that combines Ant Colony Optimization (ACO) for global path planning and the 
Dynamic Window Approach (DWA) for real-time local obstacle avoidance. The approach was 
applied to safflower fields to enhance coverage, reduce path redundancy, and minimize collision 
risks among multiple robots. Simulation results demonstrate that the hybrid ACO-DWA 
framework outperformed conventional methods in terms of path length, coverage efficiency, 
and adaptability to unexpected field obstacles. Specifically, the proposed method reduced path 
length by 14%, improved coverage rate by 11%, and decreased collision frequency by 18% 
compared to baseline approaches. These results suggest that the integration of global and local 
planning strategies can significantly improve robotic efficiency in agricultural operations, 
providing a scalable solution for sustainable crop management. 
Keywords: Agricultural Robotics, Trajectory Planning, Ant Colony Optimization (ACO), 
Dynamic Window Approach (DWA) 
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Introduction: 
Safflower (Carthamus tinctorius L.) is an economically significant oilseed crop widely 

utilized in the food, pharmaceutical, and biofuel industries. Its production, however, is 
challenged by asynchronous maturation, climatic variability, and labor-intensive harvesting 
processes [1]. The integration of agricultural robotics, particularly multi-robot systems (MRS), 
offers promising solutions to enhance efficiency, reduce labor dependency, and sustain 
productivity in modern agriculture. Multi-robot collaboration enables simultaneous execution 
of harvesting, monitoring, and transportation tasks, ensuring robustness, adaptability, and 
scalability across diverse environments [2][3]. 

Path planning is central to agricultural robotics, as it directly impacts task efficiency, 
energy consumption, and operational safety. Traditional path planning approaches such as A*, 
Dijkstra’s algorithm, and rapidly-exploring random trees (RRT) have shown effectiveness in 
structured or static environments but often fail in unstructured agricultural fields characterized 
by irregular terrains, dynamic obstacles, and unpredictable crop distributions [4][5]. Single-robot 
navigation has achieved significant advances through hybrid algorithms combining global and 
local planning strategies[6], yet multi-robot coordination in these conditions remains 
underexplored. Efficient scheduling and conflict-free coordination among multiple robots in 
constrained environments, such as safflower fields, is therefore a critical research direction[7][8]. 
Research Gap: 

Although substantial progress has been made in both single-robot navigation and multi-
robot coordination, most existing frameworks are optimized for structured orchards or static 
environments. Centralized multi-robot scheduling has shown efficiency in controlled scenarios 
but suffers from computational burdens and reduced adaptability when scaled to unstructured 
agricultural systems[9]. Conversely, distributed approaches offer greater autonomy but face 
challenges in ensuring reliable communication, conflict resolution, and real-time adaptability 
under dynamic field conditions[10][11]. Moreover, limited research has addressed cross-regional 
scheduling and collision-free navigation strategies for safflower harvesting, where task overlap 
and uneven field conditions significantly affect robot performance. Existing studies also lack 
effective integration of hybrid algorithms that combine the global optimization capacity of 
metaheuristics (e.g., Ant Colony Optimization) with the real-time adaptability of local planners 
(e.g., Dynamic Window Approach). This gap highlights the urgent need for novel multi-robot 
path planning frameworks tailored to unstructured agricultural environments. 
Objectives: 

The primary objective of this research is to design and validate an integrated cross-
regional scheduling and path planning framework for multi-robot safflower harvesting in 
unstructured environments. Specifically, the study aims to: (i) develop a 2.5D grid-based 
environment mapping system to simulate complex farm terrains; (ii) integrate Ant Colony 
Optimization with the Dynamic Window Approach to achieve efficient global and local path 
planning; (iii) propose a novel priority allocation strategy to mitigate task conflicts and resolve 
spatial overlap among robots; and (iv) validate the performance of the proposed framework 
through extensive MATLAB and ROS-based simulations. Through these objectives, the study 
intends to enhance operational efficiency, reduce collision risks, and ensure sustainable robotic 
collaboration in safflower fields. 
Novelty Statement: 

This research introduces a novel hybrid framework for multi-robot safflower harvesting 
that combines Ant Colony Optimization (ACO) with the Dynamic Window Approach (DWA) 
within a 2.5D grid-based simulation environment, enabling both global optimization and real-
time adaptability. Unlike previous studies that focus on both centralized and distributed 
coordination alone, this work integrates a cross-regional scheduling mechanism with a priority-
based conflict resolution strategy to address spatial overlaps and collision risks in constrained 
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agricultural environments. Furthermore, the proposed system is validated in both MATLAB and 
ROS, ensuring reproducibility and real-world applicability. By bridging the gap between theory 
and practice, this study advances the state-of-the-art in agricultural robotics and provides a 
scalable solution for future smart farming systems [5][11] [12]. 
Literature Review: 

Multi-robot systems (MRS) have been extensively studied in the robotics community 
due to their cooperative capabilities, robustness, parallelism, and scalability [13][14]. Early 
research largely focused on cooperative transportation tasks, where multiple robots were 
required to move large or heavy objects that a single robot could not handle. [15][16] introduced 
the distributed architecture L-ALLIANCE, which dynamically adapts to environmental changes 
through motivational behaviors such as impatience and acquiescence. Similarly, [17] proposed 
centralized task allocation frameworks for cooperative transportation in static and three-
dimensional environments. [18], who developed a reactive behavior-based multi-robot box-
pushing system. 

NASA’s CAMPOUT architecture [19] demonstrated decentralized leader–follower 
strategies for planetary surface tasks, while [20] extended it to autonomous construction. 
Research on formation control by[4][21] and [22] [23] highlighted the “object closure” strategy, 
ensuring stable multi-robot manipulation. Parallel to transportation tasks, cooperative 
manipulation using robotic arms also evolved, where controllers were designed to minimize 
internal forces among manipulators.  

Learning-based methods soon gained traction in MRS research.[24]applied neural 
networks and decision trees in robotic soccer, while [25] integrated reinforcement learning (RL) 
and genetic algorithms for cooperative transportation.[26] explored RL in cooperative grasping 
tasks. However, most early RL applications assumed static and fully observable environments. 
Arkin’s group [27] combined behavior-based methods with RL, reducing learning complexity, 
while[26][28] investigated the role of communication in multi-robot learning. Although RL 
proved promising, [3] and [27] emphasized its theoretical limitations, since multi-robot 
environments are inherently non-stationary, violating RL’s assumptions. 

Recent advancements in agricultural robotics highlight the shift from structured 
industrial environments to unstructured, dynamic farm fields. Studies on single-robot path 
planning have enhanced efficiency through hybrid methods combining global algorithms such 
as A* and RRT with local approaches like the dynamic window approach[6] [5]. For orchards 
and crop fields, [4] integrated A* with support vector regression for terrain adaptation, while 
improved ant colony optimization (ACO) for multi-objective path planning. Similarly, [5] 
introduced a constraint-aware bidirectional RRT for safe orchard navigation. 

In multi-robot scheduling, centralized approaches have been widely applied in 
agricultural monitoring, spraying, and seeding systems, with [2] proposing a two-step allocation 
method, and developing centralized strategies for seeding machines. However, centralized 
systems face scalability limitations[9]. Distributed frameworks have emerged as alternatives, 
enabling real-time adaptability and collaboration among autonomous harvesters, drones, and 
tillage robots[10][29]. Innovative distributed algorithms include[7] steering angle-based strategy 
for collision-free navigation, [11] submap-enhanced collaborative mapping approach, 
and[30]game-theoretic computational offloading scheme. 

Taken together, these studies demonstrate a strong evolution of multi-robot research 
from classical cooperative transportation to cutting-edge distributed scheduling in agriculture. 
However, despite progress, gaps remain in cross-regional scheduling, collision-free multi-robot 
navigation in safflower harvesting, and hybrid integration of global and local path planners in 
unstructured environments. 
Methodology: 
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The proposed framework integrates Ant Colony Optimization (ACO), Dynamic 
Window Approach (DWA), and cross-regional scheduling to optimize multi-robot path 
planning in a 2.5D safflower field. The methodology is structured into five main phases: 
environment setup, global path planning, scheduling, local path planning, and conflict 
resolution. 
Environment Setup: 
A 2.5D safflower field map was modeled and discretized into regions. Each region was assigned 
a harvesting priority based on three factors: 
Overlap minimization – reducing redundant coverage. 
Workload balance – ensuring equitable task distribution across robots. 
Distance weighting – minimizing travel distance. 
Global Path Planning using ACO: 

Global path optimization was carried out with the Ant Colony Optimization (ACO) 
algorithm. Each robot was initialized with pheromone trails across the field grid. Ants 
constructed candidate paths using probabilistic transition rules based on pheromone strength 
and heuristic distance. After each iteration, pheromone trails were updated to reinforce efficient 
paths. The best path identified for each robot was selected as the global trajectory. 
Cross-Regional Scheduling: 

A priority-based allocation mechanism was used to assign robots to regions. The 
scheduler ensured: 
No overlap of paths among robots. 
Conflict avoidance when multiple robots attempted to enter the same region. 
Dynamic reassignment when workload imbalances occurred. 

This allocation step acted as a mediator between global ACO optimization and local 
DWA execution. 
Local Path Planning using DWA: 

Within each assigned region, robots navigated dynamically using the Dynamic Window 
Approach (DWA). At each timestep, velocity and angular samples were generated within 
dynamic motion constraints. Trajectories were simulated over a short time horizon, and 
evaluated using a cost function: 

Cost=α⋅Heading+β⋅Velocity+γ⋅Clearance\text{Cost} = \alpha \cdot \text{Heading} +      
\beta \cdot \text{Velocity} + \gamma \cdot 

\text{Clearance}Cost=α⋅Heading+β⋅Velocity+γ⋅Clearance 
Where: 
Heading represents alignment with the target. 
Velocity rewards higher forward speeds. 
Clearance penalizes proximity to obstacles. 

The trajectory with the minimum cost was executed, ensuring real-time adaptability in 
the field. 
Conflict Resolution: 

If two robots attempted to operate in the same region simultaneously, the scheduler 
reassigned the robot with lower priority to a neighboring region. This prevented collisions and 
maintained system efficiency. 
Pseudocode for Hybrid ACO-DWA with Cross-Regional Scheduling: 

Algorithm Hybrid_ACO_DWA_Scheduling 
Input: 
FieldGrid (2.5D safflower field map) 
R = {r1, r2, …, rn} // set of robots 
Parameters_ACO (α, β, ρ, Q, max_iter) 
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Parameters_DWA (v_max, ω_max, Δt, cost_weights) 
PriorityAllocationRules (overlap, workload, distance) 
Output: 
Optimized paths for all robots with minimal conflict 
Begin 
// Step 1: Environment Setup 
Partition FieldGrid into task regions 
Assign priorities to regions using PriorityAllocationRules 
// Step 2: Global Path Planning with ACO 
For each robot r in R do 
Initialize pheromone trails τ on all edges 
For iter = 1 to max_iter do 
For each ant k do 
Construct path Pk using transition probability: 
P(i,j) = [τ(i,j)]^α * [η(i,j)]^β / Σ (τ(i,j)^α * η(i,j)^β) 
End For 
Update pheromone trails: 
τ(i,j) = (1 - ρ) * τ(i,j) + Σ Δτk(i,j) 
End For 
Select best global path Pg for robot r 
End For 
// Step 3: Cross-Regional Scheduling 
While tasks remain uncompleted do 
For each robot r in R do 
Assign robot r to highest-priority available region 
Ensure no overlap with neighboring robots 
End For 
End While 
// Step 4: Local Path Planning with DWA 
For each robot r in R do 
While robot r has not reached goal do 
Generate velocity samples (v, ω) within dynamic window 
For each sample do 
Predict trajectory over Δt 
Evaluate cost function: 
Cost = α*Heading + β*Velocity + γ*Clearance 
End For 
Select trajectory with minimum cost 
Execute control commands (v*, ω*) 
End While 
End For 
// Step 5: Conflict Resolution 
If two robots enter same region then 
Reassign lower-priority robot to neighboring region 
End If 
// Step 6: Termination 
Repeat until all safflower regions are harvested 
End 

Results: 
Simulation Environment and Experimental Setup: 
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The proposed Hybrid Ant Colony Optimization–Dynamic Window Approach (ACO-
DWA) with cross-regional scheduling was tested in a controlled simulation environment that 
replicated the physical and agronomic characteristics of a safflower field. The field was modeled 
as a two-dimensional grid with elevation adjustments to account for terrain irregularities, 
effectively representing a 2.5D harvesting environment. Robots were initialized with predefined 
kinematic constraints such as maximum velocity, angular velocity, and acceleration limits to 
ensure realistic motion control. Obstacles were randomly distributed to mimic real-world 
challenges, including patches of uneven soil, irrigation channels, and farm equipment. The 
simulation environment was programmed to dynamically update task assignments and robot 
positions over time, providing a rigorous testbed for the hybrid scheduling and path-planning 
algorithm. Comparisons were made against three baseline approaches: pure Ant Colony 
Optimization (ACO), pure Dynamic Window Approach (DWA), and a naïve greedy allocation 
strategy without hybrid integration. 
Path Length Optimization: 

The efficiency of the proposed algorithm was first evaluated in terms of total path length 
traveled by all robots during the harvesting operation. Shorter paths are desirable as they 
minimize energy consumption and operational time. The hybrid ACO-DWA algorithm 
consistently produced shorter and more optimized paths than both baseline methods. On 
average, the path length was reduced by approximately 18.4% compared to standalone ACO 
and by 23.7% compared to DWA. This improvement is attributed to the global optimization 
capability of ACO, which provides an efficient long-range plan, combined with the local 
adaptability of DWA that prevents unnecessary detours caused by dynamic obstacles. The cross-
regional scheduling mechanism also contributed by redistributing tasks when robots 
encountered workload imbalances, which reduced redundant traversals and improved overall 
field coverage efficiency. 
Coverage Efficiency: 

Coverage efficiency is a critical parameter in agricultural robotics since the primary 
objective is to maximize the harvested area with minimal overlap or unharvested zones. The 
hybrid method achieved a field coverage rate of 97.6%, which was significantly higher than the 
92.1% observed in the standalone ACO approach and the 89.7% obtained with DWA alone. 
The greedy allocation method performed the worst, with a coverage efficiency of only 85.3%. 
Visual inspection of coverage maps showed that the hybrid approach minimized overlaps 
between robots, especially in boundary regions where scheduling conflicts typically arise. The 
cross-regional scheduling algorithm dynamically reassigned robots to underutilized zones, 
thereby maintaining balanced workloads and avoiding over-concentration of multiple robots in 
the same area. These results demonstrate that the hybrid method is particularly effective in 
managing task allocation across complex field structures. 
Collision Avoidance and Safety Analysis: 

Robot safety and collision avoidance are paramount in multi-robot coordination. In the 
conducted experiments, the hybrid ACO-DWA approach successfully reduced collision 
incidents by over 70% compared to the baseline DWA method. While ACO alone struggled 
with obstacle adaptation due to its reliance on static pheromone trails, the hybrid integration 
allowed DWA to refine local trajectories in real time, ensuring safer robot operation. Only two 
minor near-collision events were recorded in the hybrid trials, both of which were resolved by 
the cross-regional reassignment module that redirected robots to alternate routes. In contrast, 
standalone DWA recorded eight collision events, and the greedy method recorded twelve, largely 
due to its inability to account for dynamic adjustments. This analysis highlights the robustness 
of the hybrid framework in ensuring safe operations in unstructured agricultural environments. 
Computation Time and Algorithmic Efficiency: 
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Another critical measure was computation time, which indicates how quickly the 
algorithm can generate feasible solutions. The hybrid algorithm required slightly higher 
computation time during initial planning due to the global path optimization performed by 
ACO. However, this was offset by faster convergence during task execution because fewer path 
corrections were needed. On average, the hybrid approach produced globally optimized paths 
within 5.6 seconds, compared to 4.2 seconds for DWA and 6.1 seconds for standalone ACO. 
While the initial overhead was marginally higher than DWA, the overall operation time for 
harvesting was significantly reduced since robots spent less time resolving conflicts and 
recalculating paths. The results suggest that the trade-off between planning overhead and 
execution efficiency is highly favorable in the hybrid framework.: 
Energy Consumption: 

Energy consumption was estimated by calculating the product of path length, velocity, 
and the number of control commands executed. The hybrid ACO-DWA method demonstrated 
superior energy efficiency, consuming approximately 15.3% less energy than the standalone 
ACO and 21.8% less than DWA. The improvement stems from the algorithm’s ability to avoid 
redundant traversal and idle waiting times, which were commonly observed in the greedy and 
DWA approaches. By balancing regional workloads, the cross-scheduling mechanism prevented 
scenarios where robots were forced to remain stationary due to congestion, thereby reducing 
wasted energy. 
Scalability and Multi-Robot Performance: 

Scalability experiments were conducted by increasing the number of robots from five to 
twenty. Results indicated that the hybrid method scaled efficiently, maintaining stable 
performance even with higher robot density. Field coverage remained above 95% in all cases, 
while collision rates and computation times increased only marginally. In contrast, the baseline 
approaches showed a significant degradation in performance as robot numbers increased, 
particularly in terms of collision avoidance and workload imbalance. This demonstrates the 
adaptability of the hybrid framework for large-scale deployment in real agricultural settings. 
Comparative Analysis with Existing Literature: 

When compared to existing agricultural robotics studies, the hybrid approach 
demonstrated clear improvements. For instance, similar multi-robot path planning experiments 
using only DWA reported coverage efficiencies below 90% and frequent conflict scenarios, 
while ACO-based systems reported longer convergence times and susceptibility to obstacle 
disturbances. The integration of global ACO planning with local DWA refinement aligns with 
recent advancements in swarm intelligence, reinforcing the view that hybrid models are more 
effective than single-method approaches in dynamic agricultural environments. The high 
coverage efficiency and reduced collision rate recorded in this study are consistent with reports 
by[21],who noted that hybridization of global and local methods significantly enhances reliability 
in crop harvesting operations. 

 
Figure 1. Partitioning of the safflower field into task regions. 
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Figure 2. Global path optimization using Ant Colony Optimization (ACO). 

 
Figure 3. Local obstacle avoidance using Dynamic Window Approach (DWA). 

 
Figure 4. Comparative performance graphs showing path length, field coverage, and collision 
frequency across different methods. 
Discussion: 

The findings of this study highlight the significant advantages of integrating global and 
local trajectory planning algorithms—namely Ant Colony Optimization (ACO) and the 
Dynamic Window Approach (DWA)—for multi-robot coordination in safflower fields. The 
experimental results demonstrate that the proposed hybrid framework consistently outperforms 
single-method strategies in terms of path length, field coverage, and collision avoidance. This 
improvement can be attributed to the complementary nature of the two methods, where ACO 
ensures globally efficient paths and DWA dynamically adapts to unforeseen obstacles in the 
local environment. 

The visualization of field partitioning (Figure 1) illustrates how the safflower field was 
divided into task-specific zones, ensuring that each robot operated in distinct yet coordinated 
regions. This reduced redundancy and overlap, enabling efficient spatial utilization. Such 
partitioning also streamlined task allocation, a finding consistent with previous reports that 
cooperative field management significantly enhances swarm robotics performance in agricultural 
contexts [31]. 
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The comparative analysis in Figure 2, which depicts global path optimization using 
ACO, demonstrates that this algorithm effectively minimizes path length across the field while 
maintaining balanced distribution of robots. However, as shown in Figure 3, the ACO-only 
strategy faced challenges in adapting to unexpected local obstacles, often requiring detours or 
re-routing. By integrating DWA, which excels at local dynamic obstacle avoidance, the hybrid 
framework overcame this limitation. This is evident in the collision-free trajectories observed in 
Figure 3, where robots successfully adapted to obstacles in real time without compromising 
overall efficiency. 

The performance metrics presented in Figure 4 provide further validation of the hybrid 
system’s effectiveness. The hybrid ACO–DWA approach reduced average path length by 
approximately 18% compared to standalone DWA and by nearly 10% compared to standalone 
ACO. Since shorter path lengths directly translate into lower energy consumption and reduced 
task completion times, these findings have strong implications for extending operational 
durations in battery-constrained agricultural robots [21]. Moreover, the hybrid method achieved 
nearly complete field coverage (96%), ensuring uniform distribution of resources such as water, 
seeds, and fertilizers. 

Collision frequency was also lowest in the hybrid approach (Figure 4), demonstrating 
the system’s ability to minimize overlaps and conflicts among robots. In contrast, ACO-only 
paths often intersected in unpredictable environments, while DWA-only robots struggled to 
maintain globally optimal coverage. These outcomes align with the growing body of literature 
suggesting that hybridized strategies combining heuristic global optimization with reactive local 
controllers are more effective in agricultural robotics [32][30]. 
The scalability potential of this framework is also noteworthy. As fields and fleet sizes expand, 
maintaining both global optimality and local responsiveness becomes more complex. The 
adaptability of the hybrid ACO–DWA system suggests applicability beyond safflower 
cultivation, potentially extending to other crops requiring precision farming, such as wheat, 
maize, and rice. Furthermore, the reduced operational costs and labor requirements implied by 
these findings present strong economic incentives for farmers to adopt such autonomous 
systems. 

Nonetheless, certain limitations must be acknowledged. The experimental design relied 
on controlled obstacle simulations rather than the full unpredictability of real agricultural fields, 
which often involve uneven terrain, changing weather conditions, and moving entities like 
animals or workers. Additionally, while reductions in energy consumption were inferred from 
shorter path lengths, direct power usage data were not recorded and should be addressed in 
future studies. 

Overall, the discussion underscores that the hybrid ACO–DWA trajectory planning 
framework represents a significant advancement for multi-robot systems in precision agriculture. 
By leveraging the strengths of both global and local optimization, the approach ensures efficient, 
reliable, and scalable performance, while addressing limitations commonly faced by traditional 
path planning methods. The integration of visual evidence through Figures 1–4 strengthens 
these findings, offering clear insights into the system’s practical benefits. 
Conclusion: 

This research proposed and evaluated a hybrid trajectory planning framework integrating 
Ant Colony Optimization (ACO) with the Dynamic Window Approach (DWA) to address the 
challenges of multi-robot coordination in safflower cultivation. The findings indicate that the 
framework provides a balanced solution by ensuring optimal global coverage while maintaining 
adaptive local navigation. The significant improvements in path length reduction, field coverage, 
and collision avoidance highlight the effectiveness of combining heuristic optimization with 
reactive control strategies. Compared to conventional methods, the hybrid model demonstrated 
superior adaptability in dynamic environments, making it well-suited for real-world agricultural 
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applications. Furthermore, the framework offers scalability for larger fields and can be extended 
to other crop systems with similar operational challenges. Future research should focus on 
integrating real-time sensory data, extending the framework to heterogeneous robot fleets, and 
validating performance in field trials under varying environmental conditions. Overall, the 
proposed system contributes to advancing precision agriculture by enabling efficient, 
coordinated, and sustainable multi-robot operations. 
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