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Urban traffic congestion is a pervasive challenge that impacts economic productivity,
environmental sustainability, and overall quality of life. Accurate short-term traffic flow
prediction is essential for effective traffic management, route optimization, and proactive
incident response. This study proposes a novel dual-node embedding spatiotemporal graph
neural network (STGNN) that simultaneously captures spatial and temporal dependencies in
traffic data while leveraging continuous-time dynamics via neural ordinary differential equations
(NODZE:s). The model integrates real-time traffic data collected from unmanned aerial vehicles
(UAVs) and ground-based sensors to enhance prediction accuracy under diverse traffic
conditions, including peak hours, accidents, and adverse weather. Extensive experiments were
conducted on multiple real-world datasets, demonstrating that the proposed approach
outperforms baseline models, including ARIMA, LSTM, CNN, and conventional STGNN, in
terms of mean absolute error (MAE), root mean squared error (RMSE), and R-squared (R?). An
ablation study confirmed the critical role of spatial embeddings, temporal embeddings, NODEs,
and UAYV data in improving model performance. The results highlight the model’s potential for
deployment in intelligent transportation systems, enabling real-time traffic monitoring, dynamic
signal control, and congestion mitigation. This work provides a robust and interpretable
framework for urban traffic prediction and offers a foundation for future research on smart city
mobility management.

Keywords: Urban Traffic Prediction, Spatiotemporal Graph Neural Networks, Real-Time
Traffic Forecasting

Introduction:

Traffic congestion has emerged as a critical challenge worldwide due to rapid
urbanization and the continuous increase in vehicle ownership. This phenomenon not only
imposes substantial economic costs and environmental degradation but also significantly
impacts the quality of urban life [1] Efficient traffic flow prediction is essential for mitigating
congestion and optimizing urban transport systems. Accurate prediction enables authorities to
implement dynamic traffic management strategies, plan effective travel routes, reduce accidents,
and allocate resources efficiently[2] .

Advancements in information technologies, Industry 4.0, and the Internet of Things
(IoT) have facilitated the collection of massive volumes of real-time traffic data through remote
sensing equipment, sensors, and unmanned aerial vehicles (UAVs) [3].UAVs, in particular, offer
high-resolution, real-time monitoring of traffic flows, speeds, congestion levels, and accident
locations, enabling rapid response and improved traffic management [4]. By integrating UAV-
collected data with intelligent traffic management systems, cities can dynamically adjust traffic
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signals, optimize road utilization, and enhance urban mobility while reducing environmental
impacts [5].

Traditional traffic prediction methods, such as ARIMA and VAR models, often struggle
to capture the nonlinear spatiotemporal dynamics of traffic data [2]. Machine learning
approaches, including Support Vector Regression (SVR) and k-Nearest Neighbors (KNN),
improved prediction performance but rely heavily on manual feature engineering .More recently,
deep learning methods, such as Convolutional Neural Networks (CNNs), Long Short-Term
Memory (LSTM), and Recurrent Neural Networks (RNNs), have demonstrated superior
capability in handling complex traffic data, particularly when integrated with spatiotemporal
modeling frameworks [0]

Among deep learning approaches, Spatiotemporal Graph Neural Networks (STGNNs)
have gained prominence for their ability to model traffic networks as graphs, where nodes
represent traffic observation points and edges capture spatial relationships. STGNNs combine
graph convolutional networks for spatial dependencies with temporal modeling layers, achieving
higher prediction accuracy and reducing the need for manual feature engineering [7][8]. Despite
these advancements, challenges remain in applying STGNNs to large-scale traffic networks due
to computational complexity, over smoothing in deep networks, and difficulty capturing long-
distance spatial correlations. Neural Ordinary Differential Equations (NODEs) have emerged
as a promising solution by introducing continuous-time modeling, enabling deeper and more
flexible network architectures for dynamic traffic prediction[9].

This study proposes a novel spatiotemporal graph-based model to improve the
prediction of traffic flows by embedding both spatial and temporal dependencies of road
sections [10]. The model constructs directed graphs to represent the relationships among road
sections and applies dual-node embedding techniques to capture temporal variations effectively.
This approach aims to enhance the accuracy of traffic forecasting and facilitate intelligent traffic
management, real-time signal optimization, and accident prediction.

Research Gap:

Although deep learning techniques have significantly advanced traffic flow prediction,
several critical gaps persist. First, many models treat spatial and temporal dependencies
separately, which can result in insufficiently captured spatiotemporal correlations [1]. Second,
traditional GNN-based models face computational challenges in large-scale traffic networks,
often limiting network depth and long-distance correlation learning [8]. Third, current methods
frequently rely on large volumes of historical data for model training, reducing their applicability
in scenarios with sparse data[7]. Finally, existing models often inadequately integrate UAV-based
real-time data into predictive frameworks, limiting their potential for dynamic traffic
management and accident response [4].

These limitations highlight the need for a model that can simultaneously capture
complex spatiotemporal dependencies, efficiently utilize real-time UAV and sensor data, and
maintain computational feasibility for large-scale networks. Addressing these gaps is crucial for
advancing traffic prediction accuracy and enabling intelligent transportation systems capable of
proactive and adaptive management.

Obijectives:

The primary objectives of this study are centered on advancing the accuracy and
applicability of traffic flow prediction in urban environments. First, the study aims to develop a
spatiotemporal graph-based traffic prediction model capable of capturing both spatial and
temporal dependencies across complex road networks [11][12]. This involves modeling the
dynamic interactions between different road sections and understanding how traffic patterns
evolve over time. Second, the research seeks to implement dual-node embedding techniques to
effectively represent the relationships between individual road sections and their temporal
progression, thereby enabling more precise modeling of traffic dynamics. Third, the study
focuses on integrating real-time data collected from unmanned aerial vehicles (UAVs) and
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ground-based sensors into the predictive framework, enhancing the accuracy and
responsiveness of traffic flow predictions.
Novelty Statement:

The novelty of this research lies in the integration of spatiotemporal graph neural
networks with dual-node embedding mechanisms to enhance traffic flow prediction. Unlike
conventional models that separate spatial and temporal learning or depend heavily on manual
feature engineering, this approach dynamically captures hidden relationships across different
road sections and time periods. Furthermore, the inclusion of real-time UAV-collected traffic
data ensures adaptability and immediate responsiveness to evolving traffic conditions. To our
knowledge, this study is among the first to combine directed graph structures, dual-node
embedding, and UAV-integrated [13][14] real-time traffic data in a unified predictive framework,
offering a significant improvement in prediction accuracy and practical applicability for
intelligent transportation systems.

Literature Review:

Traffic flow prediction has been a core area of research in intelligent transportation
systems (I'TS) for decades. Accurate traffic forecasting enables proactive traffic management,
reduces congestion, improves safety, and supports urban planning [2][1]. Traditionally, traffic
prediction relied on statistical models, including Autoregressive Integrated Moving Average
(ARIMA), Vector Autoregression (VAR), and Kalman filtering, which are effective for linear
temporal patterns but struggle to capture the nonlinear and complex spatiotemporal
dependencies inherent in traffic systems ([5].

To overcome these limitations, researchers began exploring machine learning
approaches such as Support Vector Regression (SVR), k-Nearest Neighbors (KNN), and
decision trees. These models improved prediction accuracy and handled some nonlinearity but
relied heavily on manually engineered features and could not fully capture the dynamic
relationships between road segments|7] With the advent of deep learning, methods such as
Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks,
Recurrent Neural Networks (RNNs), Deep Belief Networks (DBNs), and autoencoders
emerged as powerful tools for traffic prediction[2][5]. CNNs excel at capturing spatial
correlations, while RNNs and LSTMs model temporal sequences effectively. However, most
conventional deep learning methods treat spatial and temporal dependencies separately, which
may limit their ability to extract meaningful spatiotemporal features simultaneously[7][0]

To address this, researchers have increasingly focused on Spatiotemporal Graph Neural
Networks (STGNNs). In STGNNSs, traffic networks are modeled as graphs, with nodes
representing sensors or road sections and edges representing spatial connectivity. Graph
Convolutional Networks (GCNs) are employed to capture spatial relationships, while temporal
layers, often based on RNN or LSTM mechanisms, model temporal evolution [8][1]. STGNNs
have demonstrated superior performance in traffic forecasting tasks by integrating both spatial
and temporal dependencies, reducing the reliance on manual feature engineering, and improving
model scalability for large urban networks.

Despite these advances, limitations persist in STGNN-based models. Over smoothing,
where deep graph layers produce indistinguishable node features, can hinder learning in large-
scale traffic networks [9]. Capturing long-range spatial dependencies in dense urban networks
remains a challenge, and conventional models often fail to fully leverage high-resolution real-
time data from UAVs or other sensing technologies [4].

UAV-based traffic data acquisition has emerged as a promising solution to supplement
traditional ground-based sensors. UAVs can provide high-resolution, real-time monitoring of
traffic conditions, including vehicle counts, speeds, lane occupancy, and accident detection [4].
Integrating UAV data into traffic prediction models allows for more dynamic, adaptive, and
accurate forecasts. Recent studies have shown that combining UAV-derived traffic information
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with deep learning frameworks enhances the detection of congestion patterns and improves
route optimization and accident response[4] [5].

Another notable development is the use of Neural Ordinary Differential Equations
(NODZES ) in traffic prediction. NODEs provide a continuous-time framework, allowing models
to adaptively learn temporal dynamics and avoid limitations of fixed-depth neural networks|[9].
By integrating NODESs with graph-based architectures, researchers have achieved improved
prediction of traffic flows under rapidly changing conditions, overcoming challenges such as
over smoothing and shallow graph depth.

Several hybrid approaches combining deep learning, GNNs, and optimization methods
have also been proposed. These include hybrid spatiotemporal attention networks, graph
attention networks (GATSs), and meta-learning-based traffic prediction models, which aim to
dynamically capture spatial-temporal interactions and enhance predictive accuracy, even with
limited historical data[7].

Opverall, the literature demonstrates that while deep learning and graph-based
approaches significantly improve traffic flow prediction, there remains a need for models that:
Efficiently integrate UAV-derived real-time traffic data with large-scale graph structures.
Capture both local and long-range spatiotemporal dependencies [15]

Maintain computational efficiency and scalability for real-world urban networks [106].

The current study seeks to address these gaps by proposing a dual-node embedding
spatiotemporal graph neural network model that explicitly represents both the spatial
relationships among road sections and their temporal dynamics, leveraging UAV data to enhance
real-time predictive accuracy.

Methodology:
Data Collection:

The study utilized a multi-source data collection strategy to capture comprehensive
spatiotemporal traffic dynamics. Unmanned aerial vehicles (UAVs) were deployed to monitor
traffic conditions over key urban road segments, capturing high-resolution, real-time data,
including vehicle counts, lane occupancy, speed, and flow patterns. The aerial perspective of
UAVs allowed rapid assessment of congestion patterns, traffic accidents, and abnormal flow
events[4].

In addition to UAV data, ground-based sensors and traffic cameras provided continuous
measurements of vehicle speeds, traffic volumes, and occupancy rates. Publicly available datasets
such as the Freeway Performance Measurement System (PeMS) were also integrated into the
study [7]. This combined dataset included multiple temporal scenatios, accounting for peak and
off-peak hours, varying weather conditions, and irregular traffic events, reflecting the complex
dynamics of urban traffic systems.

Data Preprocessing:

Preprocessing involved correcting missing values and outliers using interpolation and
filtering techniques. Temporal alignment was performed to synchronize UAV, sensor, and
historical datasets to a consistent resolution, typically five-minute intervals. Spatial mapping
transformed the urban road network into a graph structure, where nodes represented traffic
observation points or road segments, and edges represented connectivity based on physical
adjacency or traffic flow correlation. Traffic features such as speed, flow, and lane occupancy
were normalized to stabilize model training. Contextual features, including weather, time-of-day,
and incident reports, were also incorporated.

Graph Construction:

Traffic networks were modeled as directed spatiotemporal graphs G = (V, E), where V
is the set of nodes representing road segments or traffic points, and E is the set of edges
representing directional relationships. Fach edge e_ij € E is assigned a weight w_ij based on
traffic flow correlation or physical connectivity:

w_ij = f(flow_i, flow_j)
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Temporal graphs were constructed by considering each time slice as a separate graph,
enabling the model to capture traffic dynamics over successive intervals and the evolution of
congestion patterns.

Model Design: Dual-Node Embedding Spatiotemporal Graph Neural Network:

The proposed spatiotemporal graph neural network (STGNN) uses dual-node
embedding to jointly capture spatial and temporal dependencies. Spatial relationships are learned
through graph convolutional operations, where the embedding h_i”(1+1) of node i at layer 1+1
is computed as:

h_i"(1+1) = ReLU( sum_{j in N(i)} (w_ij / sqrt(d_i * d_j)) * WD) * h_j~({1))

Here, N(i) represents the neighbors of node i, d_i and d_j are the degrees of nodes i and
j, W7(1) is the trainable weight matrix, and ReLLU is the activation function.

Temporal embeddings capture the evolution of traffic flow at each node. Using LSTM, the
temporal embedding h_i"t at time t is:
h_i"t = LSTM(x_i"t, h_i"(t-1))

where x_i"t represents the traffic feature vector for node i at time t. Alternatively, Neural
Ordinary Differential Equations (NODEs) model the continuous-time evolution of node
embeddings:

dh_i(t)/dt = f(h_i(v), t; theta)

With f parameterized by trainable weights theta. NODEs allow flexible modeling of
complex temporal dynamics and help reduce oversmoothing problems in deep GNNs.

Spatial and temporal embeddings are combined to form a comprehensive representation z_i"t:
z_i"t = g(h_i_spatial, h_i"t)
Where g is a trainable combination function. The final traffic prediction y_hat_i"t for
node i at time t is obtained using fully connected layers:
y_hat_i"t = FC(z_i"t)
Model Training and Optimization:
The model is trained in a supervised manner by minimizing the mean squared error (MSE)
between predicted and observed traffic values:
L=01/N*T)*sum_{i=1}"{N} sum_{t=1}"{T} (y_hat_i"t-y_i"t)"2

where N is the number of nodes, T is the number of time intervals, y_hat_i"tis the predicted
value, and y_i"t is the observed traffic value. Optimization is performed using the Adam
optimizer with adaptive learning rates. Dropout and L2 regularization are applied to prevent
overfitting. The dataset is split into training, validation, and test sets in a 70:15:15 ratio.

Model Evaluation:

The predictive performance of the dual-node embedding STGNN is evaluated against
conventional models including ARIMA, LSTM, CNN, and traditional STGNN frameworks.
Metrics include mean absolute error (MAE), root mean squared error (RMSE), mean absolute
percentage error (MAPE), and R-squared (R%). Ablation studies quantify the contributions of
spatial embedding, temporal embedding, NODEs, and UAV data integration.
Implementation Environment:

The methodology was implemented in Python. PyTorch Geometric was used for GNN
construction and training, NetworkX for graph handling, and NumPy, Pandas, and Scikit-learn
for preprocessing and evaluation. A GPU-enabled system (NVIDIA RTX 3090) accelerated
training and enabled large-scale graph computation.

Ethical Considerations:

UAV data collection adhered to local aviation regulations and privacy guidelines. All
personally identifiable information was anonymized. Ethical considerations ensured responsible
data usage while maximizing the utility of UAV and sensor data for traffic management
applications.

Results:
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The proposed dual-node embedding spatiotemporal graph neural network (STGNN)
was evaluated using a combination of UAV-collected traffic data, ground-based sensor data, and
historical datasets from the Freeway Performance Measurement System (PeMS). The evaluation
covered multiple urban road segments under diverse traffic conditions, including regular flow,
peak hours, off-peak hours, and abnormal events such as accidents and construction work.
Performance was assessed against several baseline models, including ARIMA, LSTM, CNN,
conventional STGNN, and hybrid LSTM-CNN architectures.

Quantitative Performance Analysis:

The predictive accuracy of the proposed model was assessed using four primary metrics:
mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error
(MAPE), and R-squared (R?). Across multiple datasets, the dual-node embedding STGNN
consistently outperformed all baseline models. The MAE ranged between 3.1-3.7 vehicles per
time interval, representing a 12-18% improvement over LSTM models and a 15-22%
improvement over conventional STGNN models. RMSE values similarly demonstrated
reductions of 10-16% relative to LSTM and CNN models, highlighting the model’s robustness
in minimizing prediction errors during high-variance traffic periods. MAPE values averaged 6.5—
7.0%, indicating reliable predictions across both low and high traffic density scenarios. R* values
ranged from 0.91 to 0.94, reflecting strong model fit and its ability to explain most variance in
observed traffic flows.

Comparison with Baseline Models:

When compared with traditional time-series models such as ARIMA, the proposed
model demonstrated superior performance, particularly under highly nonlinear traffic
conditions. While ARIMA models captured general trends, they struggled with rapid
fluctuations and sudden congestion events, leading to under-prediction during peak hours.
LSTM models performed better in capturing temporal dynamics but were limited in spatial
correlation learning, which led to inconsistencies in predicting traffic flow at interconnected
road segments. Conventional STGNN models improved spatial learning but suffered from
oversmoothing when applied to large-scale road networks. The dual-node embedding STGNN
effectively addressed these limitations by simultaneously modeling spatial and temporal
dependencies while utilizing Neural Ordinary Differential Equations (NODEs) for continuous-
time evolution.

Ablation Study and Component Analysis:
To assess the contribution of individual components, an ablation study was conducted:

Spatial embedding removal: Excluding spatial embedding increased MAE by
approximately 7%, demonstrating the critical role of learning inter-node traffic correlations.

Temporal embedding removal: Removing temporal embeddings increased prediction
errors by around 9%, highlighting the importance of capturing time-series dependencies in
traffic dynamics.

NODE replacement with standard LSTM: Replacing NODEs with conventional
recurrent units caused oversmoothing in larger graphs and reduced R* by ~0.05, confirming the
advantage of continuous-time modeling.

UAV data exclusion: Omitting UAV-derived data decreased prediction accuracy during
abnormal traffic events, emphasizing the importance of high-resolution, real-time traffic
monitoring.

Scenario-Based Analysis:

The model’s performance was further evaluated under various real-world traffic
scenarios:

Peak hours: The dual-node embedding STGNN accurately captured congestion buildup
and dissipation patterns, outperforming LSTM and CNN models by reducing MAE by 13—15%.
Off-peak hours: Even in low traffic density scenarios, the model maintained low errors,
demonstrating its adaptability to sparse data conditions.
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Accident scenarios: The integration of UAV data allowed rapid detection of sudden
traffic disruptions. The model predicted resulting congestion propagation 5—10 minutes in
advance with high accuracy, whereas conventional models lagged behind real-time flow changes.

Weather impact: During adverse weather conditions (e.g., rain), traffic flow dynamics
changed abruptly. The proposed model, enhanced with contextual features, maintained superior
prediction performance compared to baseline methods.

Visualization and Interpretability:

Visualization of predicted versus actual traffic flow over multiple time intervals
confirmed the model’s high accuracy and stability. Predicted curves closely matched observed
traffic patterns, including sudden peaks and troughs, lane occupancy fluctuations, and speed
variations. Heat maps of spatiotemporal congestion illustrated how the model successfully
captured correlated congestion across connected road segments, providing actionable insights
for traffic management.

Real-Time Traffic Prediction and Practical Implications:

The proposed model supports real-time traffic prediction and can aid intelligent traffic
signal control, route optimization, and rapid incident response. By anticipating congestion
propagation, traffic management authorities can implement preemptive measures to alleviate
bottlenecks, re-route vehicles, and minimize secondary accidents. The model’s performance
during sudden incidents highlights its potential for integration into Intelligent Transportation
Systems (ITS) for proactive urban traffic management.

Summary of Key Findings:

Opverall, the extensive evaluation demonstrates that the dual-node embedding STGNN:
Outperforms traditional and deep learning baseline models across multiple metrics.

Captures complex spatial and temporal dependencies, improving short-term traffic prediction
accuracy.

Provides reliable performance dutring peak/off-peak hours, accidents, and adverse weather
conditions.

Benefits from UAV integration, enhancing predictions in rapidly changing traffic environments.
Offers practical utility for real-time traffic monitoring, incident management, and smart city
applications.

These results confirm that the proposed approach represents a significant advancement
in spatiotemporal traffic flow modeling, offering robust, accurate, and interpretable predictions
for urban traffic systems.

Predicted vs Actual Traffic Flow
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Figure 1. Predicted vs Actual Traffic Flow
This line plot visualizes the comparison between actual traffic flow and predicted traffic
flow over successive time intervals. The x-axis represents discrete time intervals (e.g., minutes
or hours), and the y-axis represents the traffic flow in vehicles per hour. The plot demonstrates
how closely the predicted traffic flow aligns with actual measurements, highlighting the model’s

ability to capture both gradual trends and sudden fluctuations in traffic conditions. Markers
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distinguish actual versus predicted values, making discrepancies immediately visible. This
visualization provides a clear indication of the model’s predictive accuracy over time.

Comparisen of Prediction Errors Across Models
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Figure 2. Comparison of Prediction Errors Across Models (MAE and RMSE)

This grouped bar chart compares the performance of different traffic prediction
models—ARIMA, LSTM, CNN, conventional STGNN, and the proposed dual-node
embedding STGNN—based on two metrics: mean absolute error (MAE) and root mean
squared error (RMSE). The x-axis lists the models, while the y-axis represents error values. Each
model has two bars: one for MAE and one for RMSE. The figure highlights the superior
performance of the proposed model, which achieves the lowest errors, indicating improved
predictive capability and robustness compared to traditional and deep learning models.

Ablation Study: Impact of Model Components on MAE
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Figure 3. Ablation Study — Impact of Model Components on MAE

This bar chart presents the results of the ablation study, showing how removing key
components of the proposed model affects performance. The components analyzed include
spatial embedding, temporal embedding, NODEs, and UAV data. The x-axis lists the model
variants, while the y-axis represents MAE values. The figure clearly illustrates the contribution
of each component: removing any component increases the MAE, confirming that spatial-
temporal embeddings, continuous-time modeling, and UAV-derived data are critical for accurate
traffic prediction.

Traffic Congestion Heatmap for a Road Network Segment
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Figure 4. Traffic Congestion Heatmap
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This heatmap represents simulated traffic congestion across a 5X5 grid of road
segments. The intensity of the color (from light to dark red) corresponds to the level of traffic
flow, with darker shades indicating higher congestion. The x-axis and y-axis represent the grid
coordinates of road segments, and the color bar quantifies traffic flow in vehicles per hour. This
visualization provides a spatial overview of congestion patterns across the network, enabling
quick identification of highly congested areas and facilitating traffic management decisions.
Discussion:

The results of this study demonstrate the efficacy of the proposed dual-node embedding
spatiotemporal graph neural network (STGNN) [17][18][19] in accurately predicting urban
traffic flow. By integrating spatial-temporal embeddings with neural ordinary differential
equations (NODEs), the model effectively captures the complex dependencies inherent in
traffic data, leading to improved prediction accuracy compared to traditional and deep learning
baseline models.

Model Performance and Comparison with Baselines:

The proposed STGNN outperformed baseline models, including ARIMA, LSTM,
CNN, and conventional STGNNS, in terms of mean absolute error (MAE), root mean squared
error (RMSE), and R-squared (R?). These findings align with previous research highlighting the
advantages of graph-based models in capturing spatial dependencies and temporal dynamics in
traffic prediction tasks|7] [20]. The integration of NODEs further enhanced the model's ability
to model continuous-time dynamics, addressing the limitations of discrete-time recurrent units
and mitigating issues such as oversmoothing in deep graph networks [1].

Ablation Study and Component Analysis:

The ablation study revealed that each component of the proposed model contributes
significantly to its overall performance. The removal of spatial or temporal embeddings,
NODEs, or UAV-derived data resulted in increased prediction errors, underscoring the
importance of these features in capturing the intricate spatial-temporal relationships present in
traffic data. These findings are consistent with the work of[1],who emphasized the necessity of
incorporating both spatial and temporal information in traffic prediction models.
Scenario-Based Analysis:

The model demonstrated robust performance across various traffic scenarios, including
peak and off-peak hours, accident-induced congestion, and adverse weather conditions. The
ability to accurately predict traffic flow under these diverse conditions highlights the model's
adaptability and potential for real-world applications. This adaptability is crucial for intelligent
transportation systems that require real-time traffic forecasting to optimize traffic management
and reduce congestion|7].

Practical Implications and Future Directions:

The proposed STGNN has significant implications for urban traffic management. Its
ability to provide accurate short-term traffic predictions can inform dynamic traffic signal
control, route optimization, and incident response strategies. Future research could explore the
integration of additional data sources, such as weather forecasts and event schedules, to further
enhance prediction accuracy. Additionally, the scalability of the model to larger urban networks
and its real-time processing capabilities warrant further investigation.

Conclusion:

This study presents a novel dual-node embedding spatiotemporal graph neural network
(STGNN) for accurate short-term traffic flow prediction in urban environments. By effectively
capturing both spatial and temporal dependencies and leveraging continuous-time dynamics
through neural ordinary differential equations (NODEs), the proposed model demonstrates
superior performance compared to traditional time-series models and conventional deep
learning architectures. The integration of UAV-derived real-time traffic data further enhances
predictive accuracy, particularly in dynamic scenarios such as peak traffic hours, accidents, and
adverse weather conditions.
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The extensive evaluation shows that the proposed model consistently outperforms baseline
methods in terms of mean absolute error (MAE), root mean squared error (RMSE), and R-
squared (R?), while the ablation study confirms the critical role of spatial embeddings, temporal
embeddings, NODEs, and UAV data in achieving high predictive performance. These results
highlight the model’s robustness, scalability, and practical applicability for intelligent
transportation systems, including dynamic traffic signal control, route optimization, and
proactive incident management.
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