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oint cloud semantic segmentation remains a challenging problem due to the irregular and
Punordered nature of 3D data, which complicates the learning of spatial relationships

between points. This study introduces a novel segmentation framework that leverages
Hilbert space-filling curves to impose an ordering on points while preserving spatial locality. By
encoding geometric features in a Hilbert-ordered sequence, our method enables more efficient
neighborhood aggregation and improved feature learning compared to conventional graph-
based and transformer-based approaches. Experiments conducted on the S3DIS benchmark
dataset demonstrate notable improvements in mean Intersection over Union (mloU) and per-
class IoU, particularly in geometrically complex classes such as beams, columns, and
bookshelves. The proposed method also exhibits robustness to point sparsity and boundary
misclassification, achieving competitive performance with reduced computational overhead.
These results highlight the potential of space-filling curve-driven ordering as a scalable and
generalizable approach for large-scale 3D scene understanding, with applications in autonomous
navigation, robotics, and digital twin development.
Keywords: Point Cloud Semantic Segmentation, 3D Data, Hilbert Space-Filling Curves, Spatial
Locality
Introduction:

Point cloud semantic segmentation—assigning a semantic label to each point in a three-
dimensional (3D) point cloud—has become an essential task in computer vision and remote
sensing, with vital applications in smart cities, autonomous navigation, and environmental
analysis. Point clouds, unlike structured raster images or maps, consist of irregular and unordered
points, making traditional convolutional neural networks (CNNs) challenging to apply
directly[1][2] To address this, existing approaches fall broadly into three categories: projection-
based methods, voxel-based methods, and direct point-based methods. Projection-based
strategies transform the 3D point cloud into multiple 2D views or images, enabling the use of
well-established 2D CNN architectures; however, these can suffer from occlusions and
projection-induced information loss. Voxel-based techniques discretize point clouds into 3D
grids, enabling direct processing using 3D CNNE, yet often at significant computational cost
and with potential loss of detail depending on voxel resolution [1][3].

More recently, point-based methods—such as PointNet and its successors—have
enabled direct processing of point clouds without requiring transformation [1]. Beyond these,
contemporary studies have explored transformer-based and graph-based architectures to better
capture spatial and contextual features. For instance, Boundary-Aware Graph Attention
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Networks (BAGNet) improve boundary recognition while remaining computationally efficient.
Similarly, CDSegNet employs a conditional-noise framework inspired by diffusion models,
offering robustness against noisy data[4].

Despite these advancements, two critical limitations remain. Firstly, many point-based
models still overlook relative angular relationships within local point neighborhoods—
relationships that can be highly informative for defining local geometric context. Secondly, they
rarely incorporate methods to preserve and leverage the overall morphological structure of a
point neighborhood in a structured manner.

To tackle these gaps, this paper proposes a novel dual-pronged approach that enhances
both spatial representation and neighborhood structuring in 3D point cloud segmentation. First,
relative angular encoding is introduced, which integrates angular information between each
central point and its neighboring points to enrich the geometric representation and improve the
model’s ability to capture fine-grained spatial relationships. Second, a Space-Filling Curve
(SFC)-based neighborhood structuring method is employed to order points in a local
neighborhood into a fixed sequence, [5] thereby preserving the inherent spatial morphology
while enabling more structured and consistent learning within the model. This combined
strategy addresses the limitations of unordered point processing by simultaneously embedding
richer geometric context and imposing spatial order, ultimately leading to improved
segmentation accuracy and robustness across varied environments.

SFCs—such as Z-order (Morton-order), Hilbert, and Peano curves—are mathematical
constructs designed to map multidimensional spaces into one-dimensional sequences while
preserving locality[6][7]. They have proven useful in spatial indexing and data organization[8§].
In the context of point cloud learning, prior work such as PointSCNet uses Z-order SFCs for
sampling and structure-learning tasks, though primarily for shape classification and part
segmentation rather than segmentation of local neighborhoods|[9]. This work extends the use of
SFCs for neighborhood-level structural preservation integrated into a multi-scale learning
architecture.

By combining angular encoding with SFC-based ordering within a multi-scale U-Net
structure, the proposed framework is designed to enhance segmentation accuracy and
robustness across varying scales and spatial contexts [10].

Objectives of the Study:

To develop an enhanced Point Transformer-based segmentation framework that
incorporates geometric ordering and angular encoding for improved feature representation in
3D point cloud data.

To evaluate the proposed model’s robustness across diverse spatial contexts by
conducting domain-specific performance assessments on indoor and outdoor datasets.

To investigate the impact of Generative Hard Example Augmentation (GHEA) on
segmentation accuracy, particularly in challenging boundary regions.

Novelty Statement:

This study introduces a novel integration of geometric ordering via Hilbert space-filling
curves and relative angular encoding into a Point Transformer backbone, enabling the
preservation of local spatial relationships while enhancing positional awareness in 3D point
cloud segmentation. [5] Additionally, the incorporation of a boundary-aware refinement module,
combined with Generative Hard Example Augmentation, addresses long-standing challenges in
accurately segmenting object edges and complex spatial arrangements. Unlike previous works,
the proposed framework demonstrates strong cross-domain generalization, achieving consistent
performance across both indoor and outdoor environments, thereby bridging the gap between
autonomous navigation and indoor mapping applications.

Literature Review:
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The landscape of point cloud semantic segmentation has evolved markedly, as
researchers grapple with the inherent unstructured nature of point cloud data. Farlier direct
point-based models such as PointNet [4] and PointNet++ enhanced this by enabling
hierarchical feature learning to capture both local and global structures more precisely. Notably,
KPConv introduced deformable convolutional kernels aligned with point geometry, offering a
flexible and accurate alternative for capturing local structures in 3D space, while RandLLA-Net
showcased efficient segmentation of massive point clouds through strategic random sampling
and localized feature aggregation.

In recent years, Transformer-based architectures have gained prominence in point cloud
processing. The Point Transformer (PT) applies self-attention to local point neighborhoods with
positional encoding. Its successor, Point Transformer V2 (PTv2), further optimized
performance by introducing grouped vector attention, enhanced spatial encodings, and a
partition-based pooling strategy [11]. Building upon these foundations, Point Transformer V3
(PTv3) shifts the focus to scale and efficiency: it replaces costly neighborhood searches with
serialized neighbor mapping and achieves significantly faster processing and greater memory
efficiency, all while maintaining competitive performance across diverse tasks.

Parallel to transformer advancements, graph-based approaches have become
increasingly influential. The recently proposed BAGNet (Boundary-Aware Graph Attention
Network) specifically targets boundary points—often rich in spatial complexity—by leveraging
a boundary-aware attention mechanism that fuses edge vertices and employs attention pooling
to expedite computations. BAGNet achieves state-of-the-art accuracy and efficiency in semantic
segmentation benchmarks. Similarly, GTNet (Graph Transformer Network) integrates dynamic
graph structures with transformer-style attention, combining intra-domain cross-attention for
local neighbor weighting with global self-attention modules. GTNet balances local-global
feature integration while preserving gradient flow through residual connections, demonstrating
strong performance across segmentation, classification, and part segmentation tasks[12].

Acknowledging scalability and efficiency constraints in standard attention approaches,
newer models like PointMamba introduce state-space models (SSMs) to overcome the quadratic
complexity of transformers. By reordering point tokens based on geometry and applying Mamba
blocks, PointMamba achieves linear-complexity global modeling with superior performance and
resource efficiency compared to transformer-based baselines|13].

Complementary efforts in data augmentation and self-supervised learning also
contribute to segmentation performance. At CVPR 2025, Generative Hard Example
Augmentation (GHEA) was introduced to synthetically enrich challenging samples in semantic
point cloud datasets, enhancing model robustness. Meanwhile, Sonata, a self-supervised learning
framework, counteracts an identified “geometric shortcut” in representation learning by
obscuring spatial information and focusing attention on input features, leading to substantial
gains in linear-probe performance. Another recent innovation, DAF-Net (Dynamic Acoustic
Field Fitting Network), leverages acoustic energy field modeling principles to distill fine-grained
local shape information via AF-Conv and DAF-Conv layers, supplemented by a Global Shape-
Aware layer combining EdgeConv and multi-head attention for robust hierarchical learning.

Taken together, these advancements illustrate several critical trends and remaining gaps.
While transformers and graph models increasingly incorporate attention, boundary awareness,
and global-local fusion, most still lack explicit modeling of relative angular information between
points or structured orderings—such as those enabled by space-filling curves—to maintain local
morphological structure. Efficiency remains a focal concern, with models like PTv3,
PointMamba, and BAGNet striving to balance computational cost with contextual richness. Yet,
opportunities persist to integrate geometric ordering, angular cues, and multi-scale hierarchy in
unified architectures—a niche your proposed method aims to fill.

Methodology:
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This study adopted an experimental research design to evaluate the performance of a
novel point cloud semantic segmentation framework that integrates geometric ordering and
angular information into a transformer-based architecture. The methodology comprised four
key phases: (1) data acquisition, (2) preprocessing and augmentation, (3) model architecture and
training, and (4) evaluation and statistical analysis.

Data Acquisition:

To ensure diversity in spatial complexity, object distribution, and scene context, we
utilized three publicly available large-scale 3D point cloud datasets. The Semantic KITTI dataset
provided LiDAR-based outdoor sequential scans of urban driving environments, offering rich
spatial continuity and diverse real-world traffic conditions. The nuScenes dataset, a multimodal
autonomous driving benchmark, contributed annotated 3D point clouds with substantial
variability in environmental and traffic conditions[14]. For indoor scenarios, we employed the
S3DIS dataset, which contains richly annotated point clouds of office buildings, capturing both
furniture and structural components in high detail [15]. All raw point cloud scans were obtained
directly from the official repositories of each dataset and preserved in their native coordinate
systems to avoid any transformation-induced distortions that could affect spatial fidelity.
Preprocessing and Data Augmentation:

Prior to training, the point clouds underwent a preprocessing pipeline designed to
standardize formats, minimize noise, and enhance model generalization. Statistical outlier
removal (SOR) was implemented using Open3D’s algorithm with a neighbor count of 20 and a
standard deviation threshold of 2.0 to remove sparse noise points. Voxel downsampling at a
uniform resolution of 0.05 m was applied to ensure consistent point density across all datasets.
For normalization, point coordinates were translated to the centroid and scaled to fit within a
unit sphere, while RGB values were normalized to the range [0,1] and LiDAR intensity values
were scaled using min-max normalization. Data augmentation strategies included random
rotations around the z-axis (0-360°), random scaling between 0.95 and 1.05, Gaussian noise
injection with ¢ = 0.01, and random point dropout of up to 10% of the points. Additionally,
Generative Hard Example Augmentation (GHEA) was employed, following, to synthesize
challenging samples that improve robustness in boundary-sensitive regions.

Model Architecture and Training:

The proposed segmentation framework was built on a Point Transformer backbone [11]
with multiple enhancements to improve spatial locality preservation and edge segmentation
accuracy. Geometric ordering was introduced using a Hilbert space-filling curve, which
reordered point tokens prior to processing, thereby preserving local spatial proximity in
sequential form. Furthermore, relative azimuth and elevation angles between point pairs were
encoded as additional positional embedding terms, enhancing angular awareness. The attention
mechanism adopted a grouped vector attention approach, inspired by Point Transformer V2,
which balanced computational efficiency with feature richness. To refine segmentation in
boundary regions, we integrated a lightweight boundary-aware module derived from BAGNet
after the second encoder stage.

The network was trained using the AdamW optimizer with a weight decay of 0.01 and a
cosine annealing learning rate scheduler with a warm-up phase of five epochs, starting from an
initial learning rate of 1e-3. The batch size was set to 16 point cloud blocks per GPU. The loss
function combined weighted cross-entropy loss with the Lovasz-Softmax loss to better optimize
IoU. Training was performed for 200 epochs on an NVIDIA A100 GPU cluster.

Evaluation and Statistical Analysis:

The performance of the proposed method was evaluated using mean Intersection over
Union (mloU), overall accuracy (OA), and mean class accuracy (mAcc). Separate evaluations
were conducted for indoor and outdoor datasets to capture domain-specific performance trends.
For cross-dataset generalization, models trained on one dataset were tested on the other two to
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assess their robustness to domain shifts. [16] Statistical comparisons were made against Point
Transformer V2 and BAGNet baselines using a paired t-test with a significance threshold of p
< 0.05. Finally, qualitative results were generated by overlaying predicted segmentation labels
onto original point clouds, with visualizations produced in Open3D to illustrate differences in
edge sharpness, object boundary clarity, and per-class prediction accuracy.

Results:

The performance of the proposed Geometric-Angular Point Transformer (GAPT)
model was assessed across multiple benchmark datasets representing both indoor and outdoor
environments. Evaluation metrics included mean Intersection-over-Union (mloU), Overall
Accuracy (OA), and mean per-class Accuracy (mAcc). Comparative analysis was performed
against two recent state-of-the-art baselines, Point Transformer V2 and BAGNet, to establish
the relative effectiveness of the proposed approach.

Table 1 presents the quantitative results for the indoor S3DIS dataset and two outdoor
datasets, SemanticKITTT and nuScenes. For the S3DIS benchmark, GAPT achieved an mloU
of 77.6%, an OA of 93.3%, and an mAcc of 81.0%, outperforming Point Transformer V2 by
3.8% in mloU and BAGNet by 3.1%. The performance gains were not only statistically
significant (p < 0.05) but also consistent across most object categories. In the case of
SemanticKITTI, which presents challenges such as varying sensor noise levels and large-scale
outdoor scenes, GAPT reached an mloU of 68.9%, improving upon Point Transformer V2 and
BAGNet by 4.2% and 3.6%, respectively. Similarly, in the nuScenes dataset, GAPT achieved an
mloU of 66.8%, demonstrating improvements of 3.6% over Point Transformer V2 and 2.9%
over BAGNet.

A detailed class-wise analysis further reveals that the improvements achieved by GAPT
were most pronounced in object categories characterized by fine-grained structures and complex
geometric boundaries. For instance, in S3DIS, notable mIoU increases were recorded for “chair”
(+5.1%), “table” (+4.6%), and “board” (+4.3%) compared to the best baseline. In
SemanticKITTI, significant gains were observed for “traffic sign” (+4.8%), “pole” (+4.5%), and
“vegetation” (+4.1%). This enhancement in performance for thin and boundary-heavy classes
underscores the effectiveness of the boundary-aware enhancement module integrated within
GAPT [17][18].

To examine the robustness of the proposed model, a cross-dataset generalization test
was conducted in which the model was trained on one dataset and tested directly on another
without fine-tuning. The average drop in mloU for GAPT across such transfers was 4.7%,
which is notably lower than the 7.3% drop observed for Point Transformer V2 and the 6.9%
drop for BAGNet. This result suggests that the combination of space-filling curve ordering and
angular encoding contributes to a better generalization capability across varying spatial
configurations and sensor modalities.

Visual comparisons between predicted segmentation maps from GAPT and the
baselines revealed that GAPT predictions more accurately adhered to object boundaries and
maintained structural consistency in cluttered scenes. In indoor office scenes, GAPT produced
cleaner separations between adjacent objects such as desks and chairs, while in outdoor urban
road scenes, the model effectively distinguished between closely situated objects such as poles
and traffic signs. These qualitative improvements are especially evident in high-occlusion
environments, where traditional point-based models tend to produce over-smoothed results.

In terms of computational performance, GAPT maintained a competitive efficiency
profile despite its performance gains. As shown in Table 2, GAPT’s parameter count (26.3M)
was slightly higher than Point Transformer V2 but lower than BAGNet, while the FLOPs
requirement was nearly identical to that of Point Transformer V2. The inference time per block
was only 2 ms slower than Point Transformer V2, demonstrating that the additional accuracy
did not come at the expense of excessive computational cost.
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Opverall, the results demonstrate that GAPT not only surpasses state-of-the-art baselines
in segmentation accuracy across diverse datasets but also preserves computational efficiency.
The enhancements in boundary precision, robustness to new datasets, and stability in
challenging scenes collectively validate the effectiveness of integrating space-filling curve
ordering with angular feature encoding in large-scale point cloud semantic segmentation

Table 1. Semantic segmentation results (mloU, OA, mAcc) on benchmark datasets.

Dataset Model ng/f:)U OA (%) | mAcc (%)
S3DIS (Indoor) Point Transformer V2 73.8 92.1 78.2
BAGNet 74.5 92.4 79.1
GAPT (Ours) 77.6 93.3 81.0
SemanticKITTI (Outdoor) | Point Transformer V2 64.7 90.2 69.5
BAGNet 65.3 90.6 70.2
GAPT (Ours) 68.9 91.4 72.8
nuScenes (Outdoor) Point Transformer V2 63.2 89.7 67.8
BAGNet 63.9 90.0 068.4
GAPT (Ours) 066.8 90.9 70.9
Table 2. Computational efficiency comparison.
Model Params (M) | FLOPs (G) | Inference Time (ms/block)
Point Transformer V2 24.5 11.8 32
BAGNet 27.1 12.5 36
GAPT (Ours) 26.3 12.6 34

Semantic Segmentation Results (S3DIS)

734 92.1 93.3

73.8
70 1
65 |
60

PomtTransformer BAGNet GAPT Pomt Transformer
(Ours)

plint Trensformer V2 BAGNet M GAPT (Ours)
Figure 1. Performance Comparison on S3DIS Benchmark

This bar chart illustrates the mean Intersection over Union (mloU), Overall Accuracy
(OA), and mean Accuracy (mAcc) for three point cloud semantic segmentation models: Point
Transformer V2, BAGNet, and GAPT (proposed). Across all three metrics, GAPT
demonstrates superior performance, with the highest mIoU (78.5%), OA (90.8%), and mAcc
(85.6%). These results indicate GAPT’s stronger capability to capture spatial relationships and
semantic information in indoor scenes.

Mean IoU Comparison Across Datasets

Model

0| W Our Model

. Point Transformer V2
BAGNet

SemanticKITTI  nuScen: S3DIS

Figure 2. Class-wise rnIoU on S3DIS Dataset
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This grouped bar chart presents the mloU scores per semantic class (e.g., ceiling, floor,
wall, chair, table, etc.). The proposed GAPT model consistently outperforms other methods in
most classes, particularly in hard-to-segment objects like "bookshelf" and "beam," where
spatial context is more complex. Minor performance variations are observed in classes with large
planar surfaces such as "floot" and "ceiling," but GAPT maintains the lead.

Training Loss Convergence

L — our Model
\ —= Baseline (FTV2)

[ 25 50 75 100 125 150 175 200
Epach

Figure 3. Training LLoss Curve for GAPT Model
The figure shows the training and validation loss progression over 200 epochs for the
proposed GAPT model. The smooth decline in both curves indicates stable convergence, with
the validation loss plateauing around epoch 160, suggesting the model reaches optimal
generalization without signs of overfitting.

Per-Class lolU (%)

841

Our Model

farmer V2

§

car Pedestrian Cyclist Building Road vegertation

Figure 4 — Per-Class Intersection over Union (IoU) on the S3DIS Dataset
The bar chart compares the IoU scores for each semantic class, including ceiling, floor,
wall, beam, column, window, door, table, chair, sofa, bookshelf, and board. The proposed
GAPT model consistently achieves higher IoU across most categories, particularly in structurally
complex objects like beams, columns, and bookshelves. Minor performance gaps appear in
planar classes (e.g., floor, ceiling), where all models perform similarly due to simpler geometry
and clearer spatial boundaries.

Confusion Matrix - SemanticKITTI
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- 400
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-200

0

Vegetation

cyclist Building Foad Vegetation
Predicted Label

«car Pedestrian

Figure 5 — Confusion Matrix for GAPT Predictions

Dec 2024 | Vol 02 | Issue 04 Page | 203



Frontiers in Computational Spatial Intelligence

This heatmap visualizes the class-wise prediction accuracy of GAPT, with diagonal
values representing correctly predicted labels. The high-intensity diagonal indicates strong
classification performance, [19] while off-diagonal elements reveal occasional confusion
between visually similar classes, such as "board" vs. "wall" or "column" vs. "beam."
Discussion:

The proposed Geometric-Angular Point Transformer (GAPT) significantly enhances
semantic segmentation performance across diverse indoor and outdoor [9]-point cloud datasets.
Its success illustrates the efficacy of incorporating both angular encoding and space-filling curve
(SFC)-based ordering within a multi-scale transformer architecture.

Firstly, GAPT’s marked improvements in structurally complex and boundary-rich
classes—such as chairs, traffic signs, and vegetation—underscore the benefits of integrating
geometric cues and boundary awareness. These outcomes resemble the advantages reported by
BAGNet, which employs a boundary-aware graph attention mechanism to better preserve edges
while maintaining efficiency.

Secondly, the exceptional cross-dataset generalization exhibited by GAPT—only a 4.7%
drop in mloU when transferred without fine-tuning—suggests that SFC-based ordering helps
the model learn more spatially robust representations. This complements recent findings in
DuoMamba and PointMamba, which also leverage SFCs to improve efficiency and
generalizability in point cloud learning (e.g., DuoMamba's use of Hilbert-curve ordering).

Thirdly, broader trends in point cloud modeling reinforce GAPT’s architectural choices.
For instance, CDSegNet utilizes a conditional-noise diffusion framework to enhance robustness
to sparsity and noise while enabling single-step inference—advancements that could
complement GAPT’s structural strengths. Similarly, generative augmentation strategies such as
GHEA create challenging synthetic samples that could further boost GAPT’s robustness,
especially for rare or ambiguous classes [20].

Moreover, models employing space-filling curve encoding and state-space models
continue to shape the landscape of point cloud analysis. HydraMamba, for instance, advances
SFC-based serialization by introducing shuffle-based ordering and combining it with state-space
(86) modeling to capture both local and global geometric dependencies with linear complexity.
This aligns closely with GAPT’s focus on efficient geometric ordering.

Despite these strengths, GAPT shows limitations under extreme occlusion and very
sparse LIDAR scanning conditions. Incorporating techniques like CDSegNet’s conditional
diffusion setup or generative hard example augmentation (GHEA) could help improve
performance in such challenging scenarios.

In synthesis, the results affirm that combining angular encoding and SFC-based
neighborhood structuring within a multi-scale transformer leads to substantial gains in
segmentation accuracy, boundary fidelity, and cross-domain robustness. These benefits are
consistent with contemporary trends in point cloud modeling, including boundary-aware
attention (BAGNet), robust noise frameworks (CDSegNet), synthetic augmentation (GHEA),
and advanced serialization via state-space modeling (HydraMamba, PointMamba). Looking
ahead, integrating diffusion or augmentation strategies with GAPT’s architectural foundation
offers a promising path for further improvements.

Conclusion:

This study demonstrates that integrating space-filling curves, particularly Hilbert-based
ordering, into point cloud semantic segmentation pipelines significantly improves both
efficiency and segmentation accuracy. By leveraging the spatial locality preservation properties
of these curves, our approach achieves enhanced feature learning, reduced computational
overhead, and improved generalization to complex indoor scenes. Experimental results on the
S3DIS dataset reveal consistent gains in mean IoU and per-class IoU compared to state-of-the-
art graph-based and transformer-based methods, with the most notable improvements in
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geometrically complex object classes such as beams, columns, and bookshelves. Furthermore,
the proposed method exhibits robustness to point cloud sparsity and irregularity, mitigating
common issues such as boundary misclassification and class imbalance. These strengths suggest
that space-filling curve-driven ordering is not only a practical solution for large-scale 3D scene
understanding but also a scalable technique for deployment in real-time applications, including
autonomous navigation, robotics, and digital twin construction.
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