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Construction (AEC) industry by enabling detailed digital representations of building

components. However, effectively capturing and utilizing complex spatial relationships
within BIM models remains a critical challenge, limiting semantic richness and interoperability.
This study proposes a novel Graph Neural Network (GNN) framework that incorporates edge
features to explicitly model spatial and functional relationships between building elements. We
constructed a comprehensive graph dataset comprising 14 room types and 4 spatial relationships
to evaluate the framework’s performance on semantic classification tasks. Experimental results
demonstrate that the edge feature-enhanced GNN significantly outperforms traditional machine
learning classifiers and vanilla GNN models, achieving an accuracy of 91.8% in room type
classification. Ablation studies highlight the importance of edge attributes and advanced graph
techniques, such as the link-less subgraph method, in boosting model robustness and scalability.
Furthermore, the proposed model exhibits resilience to data sparsity and noise, suggesting
practical viability for real-world BIM applications. This research underscores the potential of
advanced GNN architectures to enhance BIM semantic enrichment, supporting more
intelligent, interoperable, and automated building design and management workflows.
Keywords: Building Information Modeling (BIM), Architecture Engineering and Construction
(AEC), Graph Neural Network (GNN)
Introduction:

Building Information Modeling (BIM) has become a transformative tool in the
Architecture, Engineering, and Construction (AEC) industry by enabling the creation of
detailed, data-rich digital representations of building assets. These models facilitate improved
planning, design, construction, and operational management processes[1][2][3]. However,
despite widespread adoption, the extraction and effective use of spatial semantic information
from BIM models remain challenging due to the inherent complexity and heterogeneity of
building data[4]. To address these challenges, semantic enrichment techniques have emerged,
integrating detailed semantic information into BIM to enhance simulation, analysis,
interoperability, and data exchange efficiency among various platforms and stakeholders [5].

With the growth of BIM applications and the increasing demand for more advanced
data querying and analytics, existing BIM models often fall short in delivering the necessary
semantic depth and consistency to support these complex requirements[6]. Recently,
advancements in artificial intelligence and machine learning, particularly Graph Neural
Networks (GNNs), have introduced innovative methods for semantic enrichment. GNNs are
well-suited to modeling building components and their spatial or functional relationships as
graph data structures, enabling improved analysis of complex interactions within BIM
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models[7][8]. These capabilities facilitate automatic classification, behavior prediction, and
anomaly detection within BIM data, reducing manual effort and improving model accuracy [9].
For example, the SAGE-E algorithm, tailored for BIM room type segmentation, leverages edge
features to significantly improve prediction accuracy[4]. Such Al-driven semantic enrichment
not only improves BIM data quality but also provides scalable solutions for the AEC sector to
detect potential design issues eatly, thereby minimizing costly errors and rework.

Research Gap:

Despite these promising developments, recent literature reviews highlight several gaps
in the current state of BIM semantic enrichment using GNNs [4][7]. First, the implementation
of graph-based semantic enrichment in BIM remains at an early stage, with insufficient
exploration of how spatial semantic features and functional spatial relationships can be optimally
modeled. While GNNs have demonstrated advanced capabilities in semantic analysis, most
studies have focused predominantly on enhancing semantic functions without adequately
addressing the coverage and diversity of BIM object types or the practical challenges of
deploying these methods in real-world AEC workflows[10]. Furthermore, although GNNs excel
at handling relational data, their computational intensity can be prohibitive, especially given the
resource constraints commonly encountered in AEC environments. There is also a lack of
systematic comparison between traditional graph-based approaches and emerging GNN
methods concerning factors such as semantic accuracy, scalability, training time, and
feasibility[11]. These gaps create a critical need for comprehensive frameworks that not only
enhance semantic richness but also balance practical deployment considerations within BIM
environments.

Obijectives:

This study aims to develop and evaluate a novel, comprehensive framework for semantic
enrichment of BIM models using Graph Neural Networks that effectively enhances semantic
richness while maintaining optimal computational performance. The specific objectives include:
(1) constructing a detailed graph dataset representing diverse architectural layouts and spatial
relationships encompassing multiple room types and spatial configurations; (2) investigating the
effects of advanced GNN design strategies such as edge feature-enhanced node features and
link-less subgraph integration on semantic enrichment effectiveness, particularly in node
classification tasks; (3) conducting a systematic performance comparison between the proposed
GNN framework and existing machine learning methods in terms of accuracy, scalability, and
training efficiency; and (4) ensuring the proposed semantic enrichment solution aligns with
widely adopted BIM standards, such as Industry Foundation Classes (IFC), to support seamless
integration and data exchange within AEC workflows [12].

Novelty Statement:

This research introduces a novel GNN-based semantic enrichment framework that
advances BIM modeling by integrating edge feature-enhanced node representation and link-less
subgraph techniques, thus capturing complex spatial relational data more effectively than prior
approaches. Unlike existing studies which often overlook BIM object type diversity and practical
implementation barriers, this framework systematically balances semantic depth and
computational feasibility, a critical consideration for real-world AEC deployment[7][11].
Moreover, the construction of a new, richly annotated BIM graph dataset comprising 14 room
types and 4 spatial relationships provides a unique resource for rigorous evaluation and
benchmarking of GNN methods in this domain[4]. This work also pioneers the alignment of
semantic enrichment outcomes with the IFC standard, ensuring interoperability and facilitating
practical adoption across multidisciplinary AEC applications. Thus, it represents a significant
step forward in both the theoretical development and applied use of GNNs for BIM semantic
enhancement.

Literature Review:
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Building Information Modeling (BIM) has become a fundamental technology in the
Architecture, Engineering, and Construction (AEC) industry by offering detailed digital
representations of building assets to support various project lifecycle stages, including design,
construction, and facility management([1] [2]. However, despite its potential, BIM models often
lack sufficient semantic depth, limiting their effectiveness in advanced analysis and data
exchange scenarios [4]. Semantic enrichment—the process of embedding additional meaning
and relationships into BIM models—has thus gained increasing attention to enhance
interoperability, enable complex queries, and support automated reasoning [5].

Recent advancements in artificial intelligence, particularly Graph Neural Networks
(GNNSs), have revolutionized semantic enrichment by allowing BIM models to be represented
as graphs, where nodes and edges encode building components and their relationships
respectively. This representation facilitates the capture of complex spatial and functional
dependencies often lost in traditional BIM workflows[7] [8]. For example, [7] demonstrated that
incorporating edge features into GNN architectures significantly improves room type
classification within BIM models, highlighting the value of relational data in semantic tasks.
Similarly, [9] utilized GNNs for automatic spatial classification, reducing manual labeling and
improving modeling efficiency.

Despite these promising developments, several challenges remain. First, the
computational intensity of GNNs can limit their application in resource-constrained AEC
environments, necessitating efficient architectures that balance semantic richness and
performance[11]. Second, many existing models lack comprehensive BIM object-type coverage,
restricting their generalizability across diverse construction projects. Third, data sparsity and
noise within BIM models can degrade GNN performance, underscoring the need for robust
preprocessing and data augmentation techniques [4]. Finally, the integration of semantic
enrichment methods with existing BIM standards, such as Industry Foundation Classes (IFC),
remains insufficiently explored, posing bartiers to widespread industry adoption [5].

Beyond classification, semantic enrichment via GNNs has been applied to enhance BIM
interoperability and automated compliance checking. [13] Explored the use of community
detection algorithms integrated with GNNs to enrich BIM models, enabling automated code
compliance verification even under data incompleteness or inconsistency. This work highlights
the role of semantic enrichment in reducing costly errors and rework by early detection of design
violations. Furthermore, [14] introduced BIM knowledge graphs enhanced with GNNs to
improve cross-platform data exchange, addressing the long-standing challenge of heterogeneous
BIM data integration.

To address these gaps, recent research has begun focusing on multimodal and hybrid
GNN architectures that incorporate multiple data sources and feature dimensions, enhancing
robustness and applicability. For instance, leveraged large language models alongside GNNs to
enrich [15] IFC models semantically, combining textual and spatial data for improved knowledge
inference. Similarly, emerging approaches consider link-less subgraph techniques and edge
feature enhancements to optimize model efficiency and accuracy [7].

In conclusion, while the application of GNNs for BIM semantic enrichment shows
significant promise, further work is needed to develop scalable, comprehensive frameworks that
align with industry standards and practical deployment constraints. Advancing these areas will
be critical to unlocking the full potential of BIM for intelligent design, construction automation,
and lifecycle management [16].

Methodology:
Research Design:

This study employed a quantitative experimental approach to develop and evaluate a
Graph Neural Network (GNN)-based framework for semantic enrichment of Building
Information Modeling (BIM) models [17]. The framework aimed to enhance spatial semantic
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representation and classification accuracy within BIM data by leveraging graph-structured
learning techniques.
Data Collection:

BIM models were collected from multiple sources including open-access repositories
and partner AEC firms to ensure diversity in building typologies and spatial configurations. The
dataset comprised 50 BIM models with varying complexity, covering 14 room types (e.g., office,
corridor, conference room, restroom) and 4 spatial relationships (adjacency, containment,
connectivity, proximity). IFC files were the primary data format used, providing rich semantic
and geometric information.

Data Preprocessing:

The data preprocessing phase involved several steps to prepare the Building Information
Modeling (BIM) data for graph-based analysis. Initially, data cleaning was performed, where
semantic inconsistencies and missing labels were manually verified and corrected in consultation
with domain experts. Following this, feature extraction was conducted, with node features
including room area, perimeter, volume, and semantic labels, while edge features captured spatial
metrics such as [18][19][20] Euclidean distance, type of connection, and directional relationships.
To ensure uniformity in scale, numerical features were normalized using min—max scaling. The
BIM models were then transformed into graphs, where nodes represented BIM components
and edges represented spatial relationships, with graph sparsification applied to reduce
computational load without compromising critical connectivity. Additionally, data augmentation
techniques—such as graph perturbation and feature masking—were employed to enhance
model robustness and generalization.

Model Development:

The proposed Graph Neural Network (GNN) model was developed with several key
architectural components. A node encoder, implemented as a fully connected layer, transformed
raw node attributes into latent embeddings. Edge-conditioned convolution layers were used to
directly incorporate edge features into the message-passing process, enabling richer spatial
relationship modeling. To address the over-smoothing problem, a link-less subgraph mechanism
was introduced, which trained isolated subgraphs in each iteration. Finally, a multilayer
perceptron classifier head predicted semantic categories for each node based on the learned
embeddings. The model was trained in a supervised manner using cross-entropy loss with L.2
regularization to reduce overfitting.

Experimental Setup:

The experimental setup involved splitting the dataset into training (70%), validation
(15%), and test (15%) subsets using stratified sampling to maintain proportional representation
of all classes. Hyperparameters—including learning rate, the number of convolutional layers,
hidden units per layer, and dropout rates—were optimized using a grid search on the validation
set. Training and evaluation were conducted on a workstation equipped with an NVIDIA RTX
3090 GPU, Intel Core 19 CPU, and 64 GB of RAM, using Python 3.8 and the PyTorch
Geometric library for efficient GNN computation.

Evaluation Metrics:

Model performance was assessed using multiple evaluation metrics at the node level.
Accuracy measured the overall correctness of predicted room types, while precision and recall
evaluated false positive and false negative rates, particularly for infrequent room types. The F1-
score, as the harmonic mean of precision and recall, provided a balanced view of performance.
Computational efficiency was also evaluated in terms of training time and memory usage. The
proposed model was compared against traditional classifiers, such as Random Forest and
Support Vector Machines, as well as baseline GNNs without edge feature integration.
Statistical Analysis:

For statistical analysis, paired t-tests at a 95% confidence level were used to determine
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the significance of performance differences between the proposed model and baselines.
Additionally, analysis of variance (ANOVA) was performed to evaluate the influence of different
hyperparameter configurations on classification outcomes.

Software and Tools:

The study employed several software tools, including Autodesk Revit for IFC data
extraction and Python libraries (pandas and numpy) for feature engineering. Model
implementation utilized PyTorch Geometric for GNN modeling and scikit-learn for baseline
classifiers. Visualization of graphs and results was performed using NetworkX and Matplotlib.
The experiments were supported by high-performance computing hardware consisting of an
NVIDIA RTX 3090 GPU, Intel Core 19 processor, and 64 GB of RAM.

Ethical Considerations:

Ethical considerations were carefully addressed by anonymizing all BIM data and
obtaining explicit permissions from data providers. No personally identifiable information was
processed, and all intellectual property rights were respected in accordance with institutional
guidelines.

Limitations:

Despite its promising results, the study faced several limitations. The dataset, while
diverse, was relatively small compared to the vast heterogeneity of real-world BIM projects. The
scope of the study was limited to 14 room types and 4 spatial relationships, which may not fully
represent all possible BIM semantic dimensions. Although graph sparsification helped reduce
computational demands, GNN processing can still be resource-intensive for extremely large
BIM models. Additionally, manual preprocessing and labeling introduced the possibility of
human bias, although expert review was employed to minimize this risk.

Results:

Semantic Classification Performance:

The proposed edge feature-enhanced Graph Neural Network (GNN) demonstrated substantial
improvements in semantic classification accuracy over baseline methods.

Table 1. Presents detailed node-level classification metrics on the test dataset
comprising 14 room types and 4 spatial relationships.

The proposed GNN model outperformed both the vanilla GNN and traditional
machine learning classifiers significantly (p < 0.01, paired t-test), highlighting the critical role of
edge feature incorporation in effectively modeling spatial relationships in BIM graphs. The
5.6% increase in accuracy over the vanilla GNN confirms the value of encoding edge
attributes such as adjacency types and directional information.

Table 1. Performance Comparison of Proposed GNN Model with Baseline Approaches

Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
Proposed GNN (with 91.8 90.5 89.7 90.1
Edge Features)
Vanilla GNN (no Edge 86.2 84.9 83.5 84.2
Features)

Random Forest Classifier 78.4 76.3 75.8 76.0

Support Vector Machine
(SVM) 75.7 74.1 72.6 73.3

Detailed Class-wise Performance:

Analysis of per-class Fl-scores (Figure 1) reveals consistent improvements across most
room types. Larger and more distinct categories like offices and corridors achieved F1-scores
above 92%, while more challenging classes such as storage rooms and restrooms had lower
scores (~85%), likely due to ambiguous boundaries and smaller sample sizes. Notably, the GNN
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model reduced confusion between spatially adjacent but functionally distinct rooms (e.g.,
conference rooms vs. offices) compared to baseline classifiers.
Ablation Studies:

To evaluate the contribution of key architectural components, ablation experiments were
conducted:
Edge Feature Removal: Eliminating edge features resulted in a drop of 5.6% in overall accuracy
and similar declines in F1-score.
Link-less Subgraph Technique: Disabling this technique led to over-smoothing, decreasing
accuracy by approximately 3.2%.
Node Feature Only: Using only geometric features without semantic metadata reduced accuracy
by 6.7%, underscoring the importance of semantic labels.
These findings demonstrate that each component contributes synergistically to the model’s
effectiveness.
Computational Efficiency:
The training process demonstrated practical feasibility for medium-sized BIM datasets:
Average training time per epoch was approximately 45 minutes on an NVIDIA RTX 3090 GPU.
Convergence typically occurred by epoch 50.
Memory usage stabilized at ~12 GB GPU RAM during peak processing.
Compared to the vanilla GNN, which required around 60 minutes per epoch, the optimized
edge feature incorporation and graph sparsification techniques contributed to reduced
computation time and improved scalability.

Traditional classifiers such as Random Forest and SVM trained significantly faster (<10
minutes), but at the cost of lower accuracy and weaker spatial context modeling.

Robustness to Data Sparsity and Noise:

To simulate real-world BIM data imperfections, the models were tested on graphs with
systematically removed edges (10%, 20%, and 30% sparsification):
The proposed GNN retained 92%, 88%, and 85% of its original accuracy, respectively.
Vanilla. GNN performance declined more steeply, dropping below 80% accuracy at 30%
sparsification.
Random Forest and SVM were least affected by edge removals but continued to perform below
80% accuracy overall.

Additionally, noise was introduced by randomly altering node features (e.g., perturbing
geometric attributes):

The proposed GNN showed robustness with less than 5% accuracy degradation for moderate
noise levels.

This resilience suggests suitability for deployment in noisy or partially incomplete BIM datasets.
Qualitative Evaluation and Visualization:

Visualizations of semantic labeling results on sample BIM models demonstrated clear
spatially coherent predictions by the proposed GNN. Figure 2 illustrates a complex office layout
where the model correctly identifies room types and spatial boundaries with minimal
misclassifications. The edge-conditioned message passing allowed the model to maintain
contextual awareness, improving the delineation of functionally distinct but adjacent spaces.

Heatmaps of prediction confidence further revealed that misclassifications primarily
occurred in boundary regions between rooms with similar functions or atypical geometries,
highlighting areas for future refinement.

Error and Confusion Analysis:
The confusion matrix (Figure 3) highlights that most classification errors involve confusion
between spatially adjacent categories with overlapping features, such as:
Offices misclassified as conference rooms (6.3% error rate)
Storage rooms misclassified as utility spaces (4.8%)
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These patterns are consistent with inherent ambiguities in BIM data and suggest that
incorporating additional contextual information, such as temporal usage patterns, could further
enhance model performance.

Class-wise F1 Scores far BIM Room Type Classification

Room Type

Figure 1: Class-wise F1 Score Bar Plot

This figure presents the F1 scores for semantic classification across different BIM room
types. Each bar represents the harmonic mean of precision and recall for a specific room
category, indicating the model’s accuracy in correctly identifying that room type. Higher F1
scores suggest better performance. The plot highlights consistently strong performance for
major room types like offices and corridors, while smaller or less distinct categories such as
restrooms and storage rooms show slightly lower scores. This visualization helps identify
strengths and weaknesses in the model’s semantic classification capabilities.

This heatmap visualizes the classification performance of the semantic enrichment
model by showing the counts of correct and incorrect predictions across all room types. The x-
axis represents the predicted room types, while the y-axis represents the true room types. The
diagonal cells indicate correct classifications, and off-diagonal cells highlight misclassifications,
revealing which room types are commonly confused. This matrix provides insight into specific
error patterns, such as mislabeling between functionally similar spaces (e.g., offices vs.

conference rooms), guiding future model improvements.

Confusion Matsix of BIM Room Type Classifcation
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Figure 2. Confusion Matrix Heatmap
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Figure 3. Prediction Confidence Heatmap on BIM Graph Nodes
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This figure shows a spatial visualization of prediction confidence scores across nodes
representing rooms in a BIM model. Each node corresponds to a building component, colored
according to the model’s confidence in its classification, with warmer colors indicating higher
confidence. The graph layout reflects the spatial arrangement of rooms, allowing visual
assessment of where the model is more or less certain. Lower confidence areas often correspond
to boundary regions between similar room types or geometrically ambiguous spaces, highlighting
areas where the model’s semantic enrichment might be improved.

Discussion:

The results of this study demonstrate that integrating edge features into Graph Neural
Networks (GNNs) significantly enhances the semantic classification accuracy of Building
Information Modeling (BIM) components. The proposed edge feature-enhanced GNN
achieved an overall accuracy of 91.8%, outperforming both traditional classifiers and vanilla
GNN models without edge conditioning. This finding aligns with the recent work of [7], who
emphasized the importance of explicitly modeling spatial and functional relationships within
BIM data to improve semantic richness and interoperability. The ability of GNNs to incorporate
complex spatial dependencies allows for more nuanced understanding and classification of
building components, which is crucial for downstream applications such as automated facility
management and construction error detection [6].

The ablation studies further highlight the critical role of edge feature integration and
advanced architectural techniques such as the link-less subgraph mechanism. Removing edge
features led to a marked decrease in classification performance, underscoring that spatial
relationships between components provide vital context beyond individual node attributes. This
is consistent with findings by [9] who demonstrated that relational information in graph
structures is pivotal for tasks like anomaly detection and spatial reasoning in architectural
models. The link-less subgraph technique mitigated over-smoothing, a common challenge in
deep GNN architectures, ensuring that node representations remained discriminative and
improved classification outcomes, as noted in recent graph deep learning literature.

From a practical standpoint, the proposed model balances accuracy with computational
efficiency, training within a reasonable timeframe on GPU hardware and showing robustness to
graph sparsification and noise. These attributes are critical for real-world deployment in the
Architecture, Engineering, and Construction (AEC) industry, where BIM datasets can be large
and heterogeneous, and data quality may vary. The robustness results corroborate those reported
by [8], emphasizing GNNs’ capacity to maintain performance under incomplete or noisy inputs.
However, challenges remain in scaling such models to very large BIM projects and in addressing
semantic ambiguities in spatially adjacent room types, such as offices and conference rooms,
which exhibited higher misclassification rates.

Despite these advances, some limitations warrant consideration. The dataset, while
diverse, covers a limited set of room types and spatial relationships; expanding this to more
complex and varied BIM datasets could further validate model generalizability[4]. Additionally,
manual preprocessing steps, including semantic label correction, introduce potential bias and
highlight the need for more automated data cleaning approaches. Future research could explore
integrating temporal usage patterns or sensor data to enrich semantic context, as suggested by
recent trends in smart building modeling][5].

In conclusion, this study confirms that GNNs with edge feature integration provide a powerful
tool for enhancing the semantic depth of BIM models, offering both theoretical and practical
improvements over existing methods. This aligns with the ongoing shift in AEC towards more
intelligent, data-driven design and management workflows, positioning semantic enrichment as
a key enabler of digital transformation in the industry.

Conclusion:
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This study presented a novel Graph Neural Network (GNN) framework enhanced with
edge features to improve the semantic enrichment of Building Information Models (BIM). The
proposed approach effectively captured complex spatial relationships among building
components, resulting in significantly higher classification accuracy compared to traditional
machine learning methods and baseline GNN models. The integration of edge attributes and
advanced graph techniques such as the link-less subgraph method contributed to improved
model robustness and scalability, essential for practical applications in the Architecture,

Engineering, and Construction (AEC) industry.

Our findings demonstrate that incorporating relational spatial information within BIM
graphs not only enhances semantic labeling precision but also supports more intelligent and
interoperable BIM workflows. Despite some challenges related to dataset diversity and
classification ambiguities in similar room types, this research establishes a strong foundation for
future work exploring richer semantic contexts and larger-scale implementations.
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