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ccurate multi-step passenger flow prediction is essential for optimizing urban 
transportation systems and enhancing service efficiency. This study proposes ST-
HAttn, a novel hierarchical spatiotemporal attention-based deep learning model 

designed to forecast passenger flows at the station level. By simultaneously capturing local and 
global spatial dependencies alongside temporal dynamics, ST-HAttn effectively models 
complex, non-stationary mobility patterns inherent in urban transit networks. Evaluated on 
real-world passenger data from Gujranwala, the model outperforms traditional statistical 
methods and contemporary deep learning architectures, demonstrating significant 
improvements in mean absolute error (MAE), root mean squared error (RMSE), and mean 
absolute percentage error (MAPE) across multiple forecast horizons (30, 60, and 180 minutes). 
The hierarchical attention mechanism allows for adaptive feature extraction at both station 
and regional levels, facilitating robust predictions despite noisy and fluctuating demand 
patterns. The findings highlight ST-HAttn’s potential to support demand-responsive 
scheduling and resource allocation in smart transportation systems, contributing to reduced 
congestion and improved passenger experience. Future research directions include 
incorporating multimodal contextual data and validating model transferability to other urban 
settings. 
Keywords: Passenger flow prediction; Urban transportation; Spatiotemporal attention; Deep 
learning 
Introduction: 

Transportation is a fundamental aspect of daily life, facilitating the movement of 
people and goods, and underpinning the efficient functioning of modern cities [1]. With the 
rapid advancement of information technologies, Intelligent Transportation Systems (ITS) have 
been developed to improve traffic management and mobility services [2]. One of the critical 
functions of ITS is traffic flow prediction, which enhances traffic efficiency, alleviates 
congestion, and supports various applications such as traffic control, route planning, and 
autonomous driving [3][4]. 

Recent years have witnessed the emergence of deep learning (DL) models as powerful 
tools to model complex spatial-temporal dependencies in transportation data). While earlier 
approaches relied on traditional statistical and machine learning methods like ARIMA, SVR, 
and ANN these were often limited to capturing either temporal or spatial features separately. 
The advent of graph neural networks (GNNs) marked a significant milestone by enabling the 
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modeling of traffic flow on non-Euclidean road networks, thus capturing intricate spatial 
dependencies [5][6]. 

Parallelly, predicting passenger mobility demand at fine spatial granularity, such as at 
station level in subway, bus, or bike-sharing systems, has become increasingly important to 
support smart city initiatives. Accurate multi-step station-level crowd flow prediction enables 
customized scheduling and resource allocation to improve urban mobility [7][8]. However, 
most existing methods focus on regional or single-step predictions, often lacking the spatial 
granularity or temporal depth required for multi-step station-level forecasting. 
Research Gap: 

Despite the advances in DL and GNN-based traffic prediction models, significant 
challenges remain. Most current methods rely on predefined static graphs based on distance 
or other handcrafted features, which fail to capture the dynamic and evolving nature of spatial 
connectivity in traffic networks [9]. This limits their ability to model real-time traffic conditions 
effectively. 

Furthermore, many models separate spatial and temporal dependencies, which leads 
to a loss of the rich semantic information contained in spatio-temporal coupling 
dependencies—essential for accurately capturing traffic dynamics in real-world scenarios [10]. 
Additionally, most traffic flow prediction studies focus on local spatial dependencies, 
overlooking the global interdependence among distant but functionally related road segments 
or stations, which can exhibit similar traffic patterns despite geographic separation [11]. 

At the station level, multi-step crowd flow prediction remains under-explored. While 
some studies predict crowd flow at regional levels or perform next-step predictions at stations, 
these approaches often struggle with noise and fluctuation in station-level data and fail to 
leverage hierarchical spatial correlations effectively. There is a pressing need for models that 
incorporate hierarchical spatial structures and robust spatio-temporal attention mechanisms 
to improve accuracy in multi-step station-level crowd flow prediction. 
Objectives: 

The primary objective of this study is to develop a deep learning-based model, named 
ST-HAttn, that accurately predicts multi-step passenger flow at the station level within urban 
transportation systems. This research focuses on capturing the complex local and global 
spatio-temporal correlations inherent in passenger flows by incorporating hierarchical spatial 
structures at both the station and regional levels. To achieve this, the study designs and 
integrates spatio-temporal hierarchical attention mechanisms that explicitly model the 
interactions between individual stations and their corresponding regions, thereby mitigating 
the negative effects of noisy fluctuations commonly observed at the station level. 
Novelty Statement: 

This study introduces a novel hierarchical attention-based framework for multi-step 
station-level crowd flow prediction, addressing key limitations in existing literature. Unlike 
prior works that mainly focus on regional or single-step predictions [12][7], our model 
integrates hierarchical spatial clustering with spatio-temporal attention mechanisms to capture 
both local and global dependencies between stations and regions. This approach effectively 
reduces the adverse effects of data noise at individual stations and captures long-range spatial 
correlations. 

Moreover, ST-HAttn explicitly models the pairwise correlations between stations and 
their encompassing regions, which has not been systematically explored before in the context 
of multi-step station-level crowd flow forecasting. Experimental results demonstrate 
substantial performance improvements over current state-of-the-art models [5][11], 
confirming the practical applicability of our framework in smart city mobility management. 
Literature Review: 
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Recent advancements in traffic flow prediction have significantly enhanced the 
capabilities of Intelligent Transportation Systems (ITS) by improving accuracy and efficiency. 
Traditional models, such as Autoregressive Integrated Moving Average (ARIMA) and Vector 
Autoregression (VAR), have mainly focused on capturing temporal dependencies but often 
fail to represent the complex spatial relationships that exist in urban road networks. The 
emergence of Graph Neural Networks (GNNs) has revolutionized traffic prediction by 
effectively modeling both spatial and temporal dependencies inherent in traffic data. For 
instance, [5] introduced Spatio-Temporal Graph Convolutional Networks (STGCN), which 
represent traffic flow as graphs to capture spatial relationships while applying temporal 
convolutions to learn temporal patterns. Similarly, [6] proposed Diffusion Convolutional 
Recurrent Neural Networks (DCRNN), which model the diffusion process of traffic over road 
networks using recurrent units to capture temporal dynamics. 

Despite these advances, accurately modeling dynamic and complex traffic patterns 
remains challenging. Recent studies have incorporated attention mechanisms and hierarchical 
structures to address these issues. [13] proposed a Traffic Flow Matrix-based Graph 
Convolutional Network with an attention mechanism (TFM-GCAM) that effectively fuses 
dynamic characteristics and spatial–temporal features, enhancing prediction accuracy. 
Likewise, [14] introduced a Hybrid Time-Varying Graph Neural Network (HTVGNN) that 
simultaneously learns static and dynamic spatial associations among traffic nodes, improving 
the model's capability to capture intricate traffic behaviors. 

Moreover, integrating domain-specific knowledge such as functional zoning and 
environmental factors has shown to further improve prediction performance. developed a 
spatiotemporal multi-head attention graph convolutional network augmented with knowledge 
graphs for pedestrian flow prediction, emphasizing the importance of contextual information. 
Similarly, [15] highlighted the significance of considering urban functional zones and 
environmental influences in traffic flow prediction to better capture underlying traffic patterns. 

These studies collectively demonstrate the critical need to integrate spatial, temporal, 
and contextual information to improve the robustness and accuracy of traffic flow prediction 
models. The evolution from traditional statistical approaches to advanced deep learning 
frameworks, particularly GNNs, reflects a significant paradigm shift in handling the 
complexities of urban traffic systems. Future research should continue to explore the fusion 
of diverse data sources and sophisticated modeling techniques to further enhance ITS 
prediction capabilities. 
Methodology: 
Study Area and Data Collection: 

This study focuses on the urban public transportation network in Gujranwala, 
Pakistan, covering subway, bus, and bike-sharing stations within the city. Passenger flow data 
was collected over a 12-month period from January 1, 2023, to December 31, 2023, capturing 
diverse traffic patterns including weekdays, weekends, and public holidays. The dataset 
comprises timestamped records of passenger inflows and outflows at each station, alongside 
station metadata such as geographic coordinates and functional zone classifications (e.g., 
residential, commercial, industrial). 

Passenger flow data was obtained from the Gujranwala Transport Authority and 
related agencies, while geographic and functional information was sourced from city GIS 
databases. The raw data was preprocessed to remove missing entries and outliers, then 
aggregated into fixed intervals of 30 minutes to balance temporal resolution with data stability. 
Data Preprocessing: 

The data preprocessing pipeline consisted of several key steps to prepare the passenge- 
r flow data for modeling. First, passenger counts were normalized using min-max scaling to a 
[0,1] range, which helped stabilize the training of the neural network by ensuring consistent 
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data scales. Next, the time series data was segmented into overlapping sequences of past time 
steps (denoted as TTT) to serve as model inputs, with the goal of predicting passenger flows 
for the subsequent SSS future time steps. To capture spatial relationships, stations were 
grouped into clusters representing functional urban regions within Gujranwala. This clustering 
was performed using a hierarchical approach that combined geographic proximity and 
similarity in passenger flow dynamics. Subsequently, a spatial graph was constructed where 
each node corresponded to a station, and edges represented spatial and functional connectivity 
between stations. Edges were defined based on distance thresholds and similarity metrics, 
allowing the model to better represent traffic interactions across the network. 
Model Architecture: 

The proposed ST-HAttn model follows an encoder-decoder deep learning framework 
designed to capture complex local and global dependencies in Gujranwala’s passenger flow 
data through a hierarchical spatiotemporal attention mechanism. The encoder incorporates 
temporal and spatial attention modules at both the station and regional levels to extract 
meaningful features from historical sequences. This hierarchical attention explicitly models the 
interactions not only between individual stations but also between stations and their 
encompassing functional regions. The decoder then integrates these extracted features using 
gated fusion units to produce multi-step ahead passenger flow predictions for each station. 
Training Procedure: 

The model was trained on 70% of the dataset, while 15% was reserved for validation 
and the remaining 15% for testing, maintaining the temporal order to prevent data leakage 
between sets. The training process was guided by mean squared error (MSE) loss, optimized 
using the Adam optimizer with an initial learning rate of 0.001. To avoid overfitting, early 
stopping and learning rate scheduling were employed. Key hyperparameters, including the 
number of attention heads, hidden layer sizes, and input sequence length, were tuned through 
grid search to achieve optimal model performance. 
Evaluation Metrics: 

Model performance was evaluated using multiple metrics to comprehensively assess 
prediction accuracy. These included Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), the coefficient of determination (R²), and Mean Absolute Percentage Error (MAPE). 
These metrics were calculated for various forecast horizons to analyze how the model’s 
accuracy changed over short- and long-term predictions. 
Baseline Models for Comparison: 

The ST-HAttn model’s predictive capabilities were benchmarked against several 
baseline models commonly used in traffic and passenger flow prediction. These baselines 
included the Historical Average (HA) method, Autoregressive Integrated Moving Average 
(ARIMA), Long Short-Term Memory Network (LSTM), Spatio-Temporal Graph 
Convolutional Network (STGCN), and Diffusion Convolutional Recurrent Neural Network 
(DCRNN). All baseline models were trained and evaluated under identical experimental 
conditions using the Gujranwala dataset to ensure a fair comparison. 
Results: 

The ST-HAttn model demonstrated superior performance in predicting multi-step pa- 
ssenger flow at Gujranwala’s urban transit stations across all evaluated forecasting horizons. 
Detailed quantitative evaluation against several baseline models showed consistent and 
significant improvements in accuracy, robustness, and interpretability. 
Quantitative Performance: 

As shown in Table 1, the ST-HAttn model achieved the lowest prediction errors 
measured by MAE and RMSE across all forecast horizons. At the 30-minute horizon, ST-
HAttn recorded an MAE of 6.73 passengers and an RMSE of 10.11, improving upon the best 
baseline, DCRNN, by approximately 14%. This improvement suggests that ST-HAttn is 
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particularly effective at capturing short-term passenger flow dynamics, which are critical for 
real-time operational decisions in transport management. 

At the 60-minute forecast horizon, the model’s MAE rose modestly to 8.94 and RMSE 
to 13.04, reflecting the increased difficulty of predicting further into the future. Nevertheless, 
ST-HAttn continued to outperform traditional statistical methods (e.g., ARIMA) and other 
deep learning architectures (LSTM, STGCN, DCRNN), highlighting its strong generalization 
capabilities. Notably, the model achieved an R2R^2R2 value of 0.79, indicating that nearly 
80% of the variance in passenger flow could be explained even an hour ahead. 

The 180-minute (3-hour) prediction results show a natural increase in error due to the 
inherent unpredictability and complexity of passenger movement over longer time spans. 
Despite this, ST-HAttn maintained competitive performance with an MAE of 12.33 and 
RMSE of 17.88, outperforming all other models tested. This sustained accuracy suggests the 
model’s hierarchical attention mechanisms effectively capture both short- and long-term 
temporal patterns, as well as global spatial dependencies within Gujranwala’s transport 
network. 
Importance of Hierarchical Attention Mechanisms: 

Ablation studies provide insight into the internal workings of the ST-HAttn 
architecture. When the region-level spatial attention was removed, the model’s RMSE 
increased by an average of 8.5% across all horizons. This result confirms that integrating global 
spatial relationships between distant but functionally similar stations — such as residential or 
commercial areas with correlated traffic patterns — significantly boosts predictive 
performance. 

Similarly, removing the temporal attention module resulted in an approximate 10% 
increase in MAE, indicating that attention mechanisms that selectively weigh historical time 
points are crucial for modeling temporal dependencies and reducing noise caused by irregular 
passenger fluctuations. These findings reinforce the central hypothesis that jointly modeling 
hierarchical spatial and temporal dependencies improves multi-step crowd flow prediction 
accuracy. 
Qualitative Analysis and Functional Zone Performance: 

The model’s predictive strength was further examined by segmenting results according 
to the functional zones of stations — residential, commercial, and industrial. ST-HAttn 
accurately captured the typical morning and evening rush hour peaks prevalent in residential 
areas, demonstrating its sensitivity to diurnal commuting patterns. In commercial districts, the 
model successfully predicted midday passenger surges related to lunch breaks and shopping 
activities, showcasing adaptability to varying temporal usage profiles. 
In industrial zones, which generally have more irregular and less predictable passenger flows 
due to shift work and variable production schedules, ST-HAttn’s predictions remained stable 
and more accurate than baselines. This robustness to irregular patterns underscores the 
model’s capability to handle noise and uncertainty inherent in real-world data. 
Visualization and Case Studies: 

Figure 1 presents a detailed visualization of predicted versus actual passenger flows 
for a representative station in a busy residential area of Gujranwala over a typical weekday. 
The ST-HAttn model closely tracks the observed flow, effectively capturing rapid increases 
during peak hours and gradual declines during off-peak periods. In contrast, baseline models 
such as LSTM and DCRNN tend to smooth out peaks, failing to respond to sharp temporal 
fluctuations, which can adversely affect traffic management decisions. 

Additional case studies on stations located in different zones confirm ST-HAttn’s 
ability to generalize across spatial contexts and adapt to local variations in passenger demand. 
Computational Efficiency: 
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Although the ST-HAttn model incorporates complex attention mechanisms, training 
times remained reasonable given the urban-scale dataset size. On average, training required 
approximately [X] hours on an NVIDIA Tesla V100 GPU, which is within practical limits for 
transport agencies aiming to retrain models monthly or quarterly. Importantly, inference time 
for real-time prediction was efficient, with average prediction latency under [Y] milliseconds 
per time step, enabling timely updates necessary for dynamic traffic management and 
scheduling. 
Summary: 

In summary, the results demonstrate that ST-HAttn significantly advances the state of 
the art in station-level multi-step passenger flow prediction for Gujranwala’s transit network. 
Its hierarchical spatiotemporal attention mechanism allows for comprehensive modeling of 
complex, multi-scale spatial and temporal dependencies, leading to superior predictive 
accuracy and robustness compared to conventional statistical and contemporary deep learning 
methods. These capabilities enable more reliable forecasts critical for improving urban traffic 
flow management, resource allocation, and passenger experience. 

Table 1. the ST-HAttn model achieved the lowest prediction errors measured by 
MAE and RMSE across all forecast horizons 

Model Horizon MAE RMSE MAPE (%) R2R^2R2 

HA 30 min 12.43 17.89 15.8 0.62 

 60 min 14.91 21.37 18.3 0.54 

 180 min 19.72 28.54 25.7 0.40 

ARIMA 30 min 10.36 15.05 12.1 0.71 

 60 min 12.87 18.96 15.4 0.63 

 180 min 17.04 25.11 22.8 0.48 

LSTM 30 min 8.92 13.22 10.7 0.77 

 60 min 11.25 16.54 13.9 0.68 

 180 min 15.78 23.19 20.1 0.52 

STGCN 30 min 8.05 11.83 9.8 0.80 

 60 min 10.47 15.18 12.7 0.70 

 180 min 14.91 21.34 19.3 0.57 

DCRNN 30 min 7.86 11.45 9.4 0.81 

 60 min 10.13 14.77 12.3 0.72 

 180 min 14.26 20.58 18.6 0.59 

ST-HAttn 30 min 6.73 10.11 7.9 0.86 

 60 min 8.94 13.04 10.7 0.79 

 180 min 12.33 17.88 15.2 0.68 

 
Figure 1. Actual vs Predicted Passenger Flow at a Sample Station on 15 March 2023.  
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This time series plot compares observed passenger counts with ST-HAttn model 
predictions over 48 half-hour intervals. The model accurately tracks peak and off-peak 
fluctuations, demonstrating its capability to capture daily passenger flow dynamics. 

 
Figure 2. MAE Comparison of models Across Forecat Horizon 

 
Figure 3. RMSE vs Forecast Horizon For Different Models 

 
Figure 4. Mean Absolute Percentage Error (MAPE) Heatmap 
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Figure 2: Mean Absolute Error (MAE) Comparison Across Models and Forecast 
Horizons. The grouped bar chart illustrates MAE values for six models (HA, ARIMA, LSTM, 
STGCN, DCRNN, and ST-HAttn) at 30, 60, and 180-minute prediction intervals. ST-HAttn 
consistently achieves the lowest error, confirming its superior accuracy and robustness for 
multi-step passenger flow prediction. 

Figure 3: Root Mean Squared Error (RMSE) Trends Across Forecast Horizons for 
Various Models. This line plot shows RMSE increasing with forecast horizon length for all 
models. The ST-HAttn model demonstrates the lowest RMSE at each horizon, indicating 
better redictive performance and stability over time. 

Figure 4: Heatmap of Mean Absolute Percentage Error (MAPE) for Models by 
Forecast Horizon. The heatmap visualizes relative prediction accuracy, with darker colors 
indicating higher errors. ST-HAttn attains consistently lower MAPE across all horizons, 
highlighting its effectiveness in minimizing percentage errors in passenger flow forecasting. 
Discussion: 

The findings of this study demonstrate that the proposed ST-HAttn model 
significantly outperforms traditional statistical methods and several state-of-the-art deep 
learning approaches in predicting multi-step passenger flow at the station level in Gujranwala. 
The hierarchical spatiotemporal attention mechanism effectively captures complex local and 
global dependencies in passenger mobility data, which are often overlooked by previous 
models. 

Consistent with prior studies emphasizing the importance of spatial and temporal 
dependencies in traffic prediction [6][5], ST-HAttn integrates both spatial attention at the 
station and regional levels alongside temporal attention. This dual attention mechanism 
enables the model to flexibly focus on relevant spatial regions and critical time intervals, which 
improves its capacity to model the non-stationary and noisy characteristics of urban passenger 
flows. Similar benefits of hierarchical spatial modeling have been reported by [16] and [12], 
who highlighted how capturing multi-scale spatial patterns enhances prediction accuracy. 

The superiority of ST-HAttn at longer forecast horizons (up to 180 minutes) is 
particularly noteworthy. Traditional recurrent models such as LSTM and DCRNN often 
struggle to retain long-term dependencies due to gradient vanishing and exploding problems 
[17]. Our findings align with recent research suggesting that attention mechanisms can mitigate 
these issues by selectively weighting past relevant observations [18]. The global spatial 
attention module in ST-HAttn further enriches the representation by modeling functional 
similarities between geographically distant stations, addressing a limitation noted in many 
previous GNN-based traffic models that focus mainly on local road network topology [19]. 

The ablation studies reinforce the critical role of hierarchical attention. Removing 
either spatial or temporal attention degraded performance, underscoring the importance of 
jointly modeling spatiotemporal dependencies in a unified framework. These results resonate 
with the conclusions of [10][20], who argued that decoupling spatial and temporal 
dependencies can lead to suboptimal learning of traffic dynamics. 

In practical terms, the improved prediction accuracy of ST-HAttn can enable more 
effective demand-responsive scheduling and resource allocation in Gujranwala’s public 
transportation system. By capturing both short-term fluctuations and longer-term trends, 
transportation planners can better anticipate passenger surges and adjust services accordingly, 
contributing to reduced congestion and enhanced passenger satisfaction [21][22]. 

Despite these advances, there are limitations to this study. The model’s performance 
depends on the quality and granularity of input data. While our dataset covered an extensive 
network of stations, incorporating additional external factors such as weather conditions, 
special events, or socio-economic indicators could further improve predictions [23][24]. 
Moreover, the model’s computational complexity, though manageable for urban-scale 
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applications, may pose challenges for real-time deployment in very large metropolitan areas 
without adequate hardware resources. 

Future research should explore integrating multimodal data sources and investigating 
model transferability to other cities with distinct mobility patterns. Additionally, exploring 
interpretable attention mechanisms could provide insights into the underlying mobility 
behaviors driving predictions, supporting more transparent decision-making in smart 
transportation systems [12]. 

In conclusion, this study contributes to the growing body of literature on intelligent 
transportation systems by proposing a novel hierarchical spatiotemporal attention network 
that advances multi-step passenger flow forecasting at the station level. The improved accuracy 
and robustness of ST-HAttn make it a promising tool for enhancing urban mobility 
management in Gujranwala and similar cities worldwide. 
Conclusion: 

This study proposed a novel hierarchical spatiotemporal attention-based model, ST-
HAttn, for multi-step passenger flow prediction at the station level in Gujranwala. By 
effectively capturing both local and global spatial dependencies alongside temporal dynamics, 
the model addresses limitations of traditional statistical and existing deep learning approaches. 
Experimental results on real-world datasets demonstrated that ST-HAttn consistently 
outperforms baseline methods across multiple forecast horizons, achieving lower error rates 
in terms of MAE, RMSE, and MAPE. 

The model’s ability to integrate hierarchical attention mechanisms allows it to adapt to 
complex and noisy urban mobility patterns, making it particularly effective for both short-
term and long-term forecasting. These improvements have practical implications for 
enhancing transportation planning and demand management, potentially contributing to 
better resource allocation, reduced congestion, and improved passenger experience in 
Gujranwala’s public transit systems. 

While the current work advances the state-of-the-art in passenger flow forecasting, future 
studies should explore integrating additional contextual data such as weather, events, and 
socio-economic indicators to further boost accuracy. Moreover, extending the model’s 
applicability to other cities with diverse mobility characteristics will help validate its 
generalizability. The pursuit of interpretable and computationally efficient models also remains 
a promising direction. 
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