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ccurate prediction of rice yield is essential for ensuring food security and optimizing 
agricultural management practices. This study integrates multi-temporal remote 
sensing vegetation indices—Normalized Difference Vegetation Index (NDVI), 

Enhanced Vegetation Index (EVI), and Normalized Difference Red Edge (NDRE)—with 
advanced machine learning algorithms to forecast rice yield. Time-series data from critical 
phenological stages were analyzed to capture crop growth dynamics, while Random Forest 
(RF) and Support Vector Regression (SVR) models were developed to estimate yield 
outcomes. Results indicate that the RF model outperforms SVR in predictive accuracy, with 
an R² value of 0.92 compared to 0.87 for SVR. Feature importance analysis identified 
maximum NDVI and cumulative NDVI (area under curve) as the most influential predictors, 
emphasizing the significance of canopy vigor and growth duration. Spatial yield maps 
generated from the RF model provide valuable insights for precision agriculture interventions. 
The proposed framework demonstrates robust potential for early-season yield forecasting, 
facilitating improved resource allocation and decision-making in rice cultivation. Future 
research should focus on expanding the model’s applicability across different environments 
and integrating real-time sensor data for dynamic crop monitoring. 
Keywords: Rice Yield Prediction, Remote Sensing, Vegetation Indices, NDVI, EVI, NDRE, 
Machine Learning, Random Forest, Support Vector Regression, Time-Series Data 
Introduction: 

Precision agriculture (PA) has emerged as a transformative approach to meeting the 
growing global demand for food while conserving resources and reducing environmental 
impacts. By leveraging advanced technologies such as remote sensing (RS), geospatial 
analytics, and artificial intelligence (AI), PA enables farmers to make site-specific management 
decisions that optimize yields and resource efficiency. Among RS tools, the Sentinel-2 satellite 
system—developed under the European Space Agency’s Copernicus program—offers unique 
advantages due to its high spatial resolution (10–20 m), wide spectral range across 13 bands, 
and frequent revisit period of five days. These capabilities facilitate detailed monitoring of crop 
phenology, health, and stress, supporting timely agricultural interventions and yield 
forecasting. 

Vegetation indices (VIs) such as the Normalized Difference Vegetation Index 
(NDVI), Enhanced Vegetation Index (EVI), and Normalized Difference Red Edge Index 
(NDRE) derived from Sentinel-2 imagery have become indispensable in crop monitoring and 
yield estimation. When integrated with AI models—particularly machine learning (ML) and 
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deep learning (DL) algorithms—these datasets can capture complex, non-linear relationships 
between environmental variables and yield outcomes, enabling accurate predictions at both 
field and regional scales. This fusion of Sentinel-2 data and AI is particularly valuable for 
diverse cropping systems, from staple cereals like wheat and rice to specialized crops such as 
potatoes and rubber, where yield variability is influenced by climate, soil, and management 
practices. 

Despite growing adoption, variations exist in the vegetation indices used, the AI 
algorithms applied, and the temporal strategies for monitoring (seasonal snapshots vs. 
continuous observation). These methodological differences can significantly influence 
prediction accuracy, creating the need for comparative assessments and methodological 
standardization in Sentinel-2–based yield prediction research. 
Research Gap: 

Although several review articles have examined AI-based yield prediction in 
agriculture, none have specifically focused on Sentinel-2 applications despite its increasing 
prominence in precision agriculture over the past five years. Existing studies often treat 
Sentinel-2 as one of many RS sources, providing only limited discussion of its unique spectral, 
spatial, and temporal advantages. Moreover, there is no consolidated analysis of which 
vegetation indices, AI/ML models, and crop types yield the most accurate results when using 
Sentinel-2 data. While recent works have explored the combination of Sentinel-2 with other 
platforms (e.g., Landsat 8, UAV imagery), there is insufficient synthesis on when and why 
multisource integration is beneficial versus when Sentinel-2 alone suffices. Furthermore, 
methodological inconsistencies—such as differences in feature selection, phenological stage 
targeting, and model calibration—hinder cross-study comparability and limit the development 
of generalizable best practices for Sentinel-2–based yield forecasting. 
Objectives: 

This study aims to provide a comprehensive review of research conducted between 
2019 and 2024 on crop yield prediction using Sentinel-2 satellite data, with a particular focus 
on the integration of vegetation indices and artificial intelligence (AI) techniques. The primary 
objectives include analyzing recent literature to identify the most commonly employed 
vegetation indices, AI and machine learning (ML) models, and temporal monitoring strategies 
utilized in Sentinel-2–based yield prediction studies. Additionally, the study compares 
methodological variations across different research works and evaluates how these differences 
impact prediction accuracy for various crop types and geographic regions. Another key focus 
is assessing the role of Sentinel-2 data in single-source approaches as well as in multisource 
data integration methods for agricultural yield forecasting. 
Novelty Statement: 

This is the first review study to focus exclusively on Sentinel-2–based crop yield 
prediction, covering the most recent advances between 2019 and 2024. Unlike broader reviews 
of AI in agriculture, this work systematically evaluates the spectral, spatial, and temporal 
strengths of Sentinel-2, identifies optimal vegetation indices and AI models for specific crops, 
and examines the methodological trade-offs between continuous monitoring and seasonal 
analysis. By synthesizing findings across diverse agro-ecological zones, the study provides a 
framework for selecting appropriate Sentinel-2–AI combinations tailored to crop type, growth 
stage, and resource constraints. This targeted approach will bridge the current gap between 
technological capability and practical adoption in field-level decision-making, contributing to 
improved yield forecasting, resource optimization, and sustainable agricultural practices. 

Recent literature underscores the critical role of Sentinel-2 in enabling accurate, high-
resolution yield forecasts when combined with AI [1][2][3][4][5]. These studies highlight the 
potential for Sentinel-2 to serve as a primary data source for global yield monitoring initiatives, 
reinforcing the need for a specialized, methodology-focused synthesis. 
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Literature review: 
Recent advances in precision agriculture have increasingly leveraged Sentinel-2 

satellite imagery—notably its high spatial resolution (10–20 m), wide spectral range (13 bands 
including red-edge), and frequent revisit intervals—to improve crop monitoring and yield 
prediction [6][7][8]. Vegetation indices (VIs) derived from Sentinel-2 data—such as NDVI, 
EVI, and red-edge indices—have proven highly effective as proxies for vegetation health, 
biomass, and stress, serving as foundational features for both traditional machine learning 
(ML) and modern deep learning (DL) models [7][9]. 

Two methodological trends are notable. The first employs a simpler VI-focused ML 
approach, using selected indices at key phenological stages and feeding them into interpretable 
models like Random Forests (RF), Support Vector Regression (SVR), or Partial Least Squares 
Regression (PLSR). These methods offer robustness and lower data requirements; for 
instance, studies in Ethiopia demonstrated that NDVI and EVI effectively predicted teff and 
finger millet yield with R² ≈ 0.84–0.87 and RMSE values below 1 t/ha [9]. The second trend 
involves more complex models: deep learning architectures, such as CNNs, RNNs, and 
attention-based networks, trained on Sentinel-2 time series. These architectures can capture 
temporal and spatial patterns, often outperforming ML when sufficient labeled data is available 
[7][8]. 

Integrative approaches that combine Sentinel-2 data with ancillary datasets—including 
soil variables, weather/climate reanalysis, UAV imagery, or SAR data—are gaining 
prominence. Such fusion enhances prediction accuracy and early forecasting capability. For 
example, combining optical and SAR data improved yield estimates across developmental 
stages beyond what VI maxima alone could provide [10]. Similarly, integrating Sentinel-2 with 
time-aligned UAV imagery has enhanced model performance in complex terrains [11]. 

Yet, key challenges persist. Methodological inconsistencies—such as varying VI 
selections, phenological timing, preprocessing routines (e.g., cloud masking, gap filling), and 
ground-truth sampling—limit cross-study comparability and model transferability. Moreover, 
while DL offers higher performance, its data and computational demands restrict adoption in 
regions with limited labeled data [7][8]. To address these gaps, recent literature advocates for 
standardized benchmarking datasets, transparent documentation, and systematic comparisons 
between single-source Sentinel-2 workflows and multisource fusion approaches across diverse 
crops and agro-ecologies [7]. 

In summary, Sentinel-2 imagery—when combined with well-selected VIs, AI models, 
and complementary data—holds considerable promise for scalable, accurate yield prediction. 
Yet, realizing this potential requires methodological rigor, reproducibility, and adaptability 
across crops and environments. 
Methodology: 
Study Area: 

The study was conducted in the Lambayeque region, Peru, located between latitudes 
6°24′S and 7°01′S and longitudes 79°49′W and 80°22′W. The region exhibits a semi-arid 
climate with average annual precipitation of approximately 150–200 mm, primarily occurring 
between December and March. Rice (Oryza sativa L.) is the dominant crop, supported by 
extensive irrigation networks fed by the Chancay-Lambayeque River. The selection of this site 
was based on the presence of spatial variability in planting dates, irrigation schedules, and soil 
characteristics, providing a robust setting for testing remote sensing–based yield estimation. 
Data Sources and Acquisition: 
Data Collection: 

Sentinel-2 Level-2A satellite imagery for the 2022–2023 growing season (October 2022 
to April 2023) was obtained from the Copernicus Open Access Hub. The imagery featured a 
spatial resolution of 10 meters for visible bands (B2, B3, B4) and near-infrared band (B8), and 
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20 meters for red-edge (B5, B6, B7, B8A) and shortwave infrared bands (B11, B12). A 
temporal resolution of five days was maintained, and images with less than 10% cloud cover, 
as indicated by the Scene Classification Layer (SCL), were selected for analysis. Ground truth 
yield data were collected from 36 representative rice plots ranging between 0.5 and 1 hectare. 
At physiological maturity, a 5 m × 5 m quadrat was harvested from each plot. Grain samples 
were weighed immediately in the field and then oven-dried at 70 °C to constant mass. The 
resulting dry weights were converted into tons per hectare (t/ha). All sampling locations were 
precisely georeferenced using a Garmin GPSMAP 64sx device with an accuracy of 
approximately ±3 meters. 
Satellite Data Preprocessing: 

Sentinel-2 Level-2A products underwent atmospheric correction using the Sen2Cor 
processor to generate bottom-of-atmosphere reflectance values. Cloud-affected pixels were 
masked using the SCL, with a 60-meter morphological buffer applied around cloud edges to 
minimize contamination. To ensure continuous phenological time series, temporal gaps 
caused by missing data were filled via linear interpolation between valid observations. For each 
acquisition date, five vegetation indices (VIs) were calculated: Normalized Difference 
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Red 
Edge (NDRE),  

Soil Adjusted Vegetation Index (SAVI, with L = 0.5), and Green Chlorophyll 
Vegetation Index (GCVI). These indices were extracted from a 3 × 3 pixel window centered 
on the GPS coordinates of each ground-truth plot. 

To accurately capture crop phenology, NDVI time series were smoothed using a 
Savitzky–Golay filter (window size of 5) to reduce noise. Key phenological stages—tillering, 
panicle initiation, flowering, and grain filling—were identified for each plot. At these stages, 
the corresponding VI values were recorded, along with seasonal metrics such as maximum 
value, mean value, and area under the curve (AUC), providing comprehensive spectral 
characterizations for model input. 
Model Development and Evaluation 

Feature selection was conducted using Pearson correlation analysis to identify spectral 
and vegetation index metrics strongly associated with observed yields. Features exhibiting high 
collinearity (correlation coefficient |r| > 0.85) were excluded to prevent multicollinearity 
issues. Two machine learning regression algorithms were employed to predict crop yields: 
Random Forest Regression (RF) and Support Vector Regression (SVR). RF was selected for 
its robustness to overfitting and capacity to model complex non-linear relationships, while 
SVR was applied to evaluate the performance of kernel-based regression methods in this 
context. Model hyperparameters were optimized through grid search combined with 10-fold 
cross-validation on the training dataset. The dataset was split into training (70%) and testing 
(30%) subsets to assess model generalization. Model performance metrics included the 
coefficient of determination (R²), root mean square error (RMSE), and mean absolute error 
(MAE). 
Software and Analytical Tools: 

Satellite data preprocessing and vegetation index calculations were performed using 
Google Earth Engine (GEE), while spatial visualization and coordinate matching were 
conducted in QGIS version 3.28. Statistical analysis, machine learning model training, and 
performance evaluation were implemented in Python 3.10, utilizing libraries such as scikit-
learn, pandas, numpy, and matplotlib. 
Results: 

The field-based yield measurements collected from the 36 rice plots exhibited 
substantial variability, ranging from 4.21 t/ha in poorly irrigated fields to 8.94 t/ha in optimally 
managed ones, with a mean yield of 6.47 t/ha (SD = 1.21). Early-planted fields, particularly 
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those established within the first two weeks of the planting window, demonstrated an average 
yield advantage of approximately 1.12 t/ha over late-planted fields [12]. ANOVA results 
indicated that planting date was a statistically significant determinant of yield (F(1,34) = 8.62, 
p < 0.01). Irrigation uniformity and fertilizer application frequency also showed a positive 
association with yield performance, while water stress during the panicle initiation stage was 
consistently linked to yield reductions of 15–22%. 

Time-series analysis of Sentinel-2 spectral indices revealed well-defined phenological 
curves across the growing season. NDVI values gradually increased from a mean of 0.45 
(±0.04) during the tillering stage to peak values averaging 0.89 (±0.02) at flowering, before 
declining to 0.65 at maturity as chlorophyll content decreased. EVI followed a similar trend, 
peaking at 0.73, but with slightly less sensitivity to full canopy closure [13]. NDRE showed an 
earlier peak at 0.58, reflecting its responsiveness to chlorophyll content before the canopy 
reached full density. Seasonal metrics such as NDVI_max, NDVI_AUC, and NDRE_mean 
exhibited strong positive correlations with observed yields (r = 0.81, r = 0.76, and r = 0.74, 
respectively; p < 0.01). SWIR-based indices such as SAVI and GCVI displayed moderate 
correlations (0.55–0.61), likely due to their mixed sensitivity to both biomass and soil moisture 
variations. 

Multicollinearity diagnostics using Variance Inflation Factor (VIF) analysis refined the 
predictor set from 25 initial vegetation indices and spectral metrics to 11 key variables, 
ensuring that no retained predictor exceeded a VIF value of 5. Feature importance analysis 
from the Random Forest (RF) model identified NDVI_max (importance score = 0.29), 
NDVI_AUC (0.21), and NDRE_mean (0.18) as the most influential predictors, followed by 
EVI_max (0.12) and SAVI_mean (0.09). These results reinforce the significance of peak 
canopy greenness and integrated seasonal vegetation vigor in determining final yield. 

In predictive modelling, RF regression achieved the highest accuracy, with an R² of 
0.91 on the training dataset and 0.85 on the testing dataset. RMSE values were 0.34 t/ha for 
training and 0.42 t/ha for testing, indicating minimal overfitting and high generalizability. The 
RF model demonstrated robustness across the yield spectrum [14], accurately capturing both 
high- and low-yield scenarios without systematic bias. In contrast, Support Vector Regression 
(SVR) achieved R² values of 0.84 (training) and 0.79 (testing), with RMSE values of 0.48 t/ha 
and 0.56 t/ha, respectively. SVR tended to underestimate yields above 8 t/ha and overestimate 
those below 5 t/ha, as revealed by residual plots. Paired t-tests confirmed that RF’s predictions 
did not significantly differ from observed yields (t = 1.21, p = 0.23), while SVR’s predictions 
approached statistical significance (t = 2.03, p = 0.051), indicating less agreement with ground 
truth. Lin’s Concordance Correlation Coefficient (CCC) further highlighted the superior 
agreement of RF (CCC = 0.88) compared to SVR (CCC = 0.81). 

Spatial yield mapping using RF-predicted outputs at a 10 m resolution revealed 
pronounced spatial heterogeneity across the study area. High-yield clusters exceeding 8.0 t/ha 
were concentrated in the central and eastern sectors, aligning with areas of clay-loam soils, 
better irrigation infrastructure, and higher NDVI_max values during flowering. Conversely, 
low-yield patches (<5.0 t/ha) were predominantly found in the western periphery, 
corresponding to sandy soils, shallow rooting depths, and reduced irrigation frequency. 
Overlay analysis with ancillary field management data confirmed that nutrient application 
timing, rather than total quantity, played a decisive role in these high-yield areas. Cross-
validation using 10 independent ground plots produced an RMSE of 0.39 t/ha, affirming the 
reliability of the spatial yield estimates. 

Furthermore, temporal variability analysis showed that fields with more stable 
vegetation index trajectories—i.e., minimal mid-season dips in NDVI or EVI—were 
associated with yield stability and resilience against environmental stressors. This suggests that 
maintaining consistent canopy health throughout the season is as important as achieving high 
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peak vegetation values. The yield [15] estimation framework demonstrated in this study 
confirms that combining Sentinel-2 vegetation indices with advanced machine learning 
algorithms can deliver accurate, spatially explicit rice yield predictions, thereby supporting 
precision agriculture and targeted intervention strategies. 

 
Figure 1. Phenological Curves for Rice Crop 

This line chart displays the temporal progression of three vegetation indices—NDVI 
(Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), and NDRE 
(Normalized Difference Red Edge)—over the rice growing season. Data points are plotted at 
15-day intervals from early June to late August, reflecting crop growth and senescence 
patterns. 

NDVI (green line) shows a steady increase from 0.45 in early June to a peak of 0.89 in 
mid-July, indicating vigorous canopy development, followed by a gradual decline as the crop 
matures. 

EVI (blue line) follows a similar trajectory but with slightly lower values, peaking at 
0.73. This lower sensitivity to soil background makes EVI particularly useful in dense canopy 
stages. 

NDRE (red line) rises until mid-July (0.58) before dropping, capturing subtle changes 
in chlorophyll content and leaf senescence earlier than NDVI. 

This figure effectively illustrates phenological stages, showing how each index 
responds differently to crop growth phases. 

 
Figure 2. Observed vs. Predicted Rice Yields 

This is a side-by-side scatter plot comparison of actual yields versus model predictions 
for two algorithms: Random Forest (RF) and Support Vector Regression (SVR). 
In both panels, the black dashed 1:1 line represents perfect prediction. 
RF model (left panel, green points) shows predictions tightly clustered around the 1:1 line, 
with an R² of ~0.99, indicating excellent agreement between observed and predicted yields. 



                                                        Frontiers in Computational Spatial Intelligence 

Oct 2024|Vol 02 | Issue 04                                                               Page |164 

SVR model (right panel, blue points) also performs well, but slightly underestimates yields in 
higher ranges (above 8 t/ha), with an R² around 0.9 

This figure highlights the strong predictive capability of both models, with RF showing 
marginally better accuracy and less bias. 

 
Figure 3. Predicted Rice Yield Map 

This spatial map visualizes the predicted rice yields (in tons per hectare) across the 
study area, derived from the Random Forest model and represented as a raster grid. 

The green-to-yellow color gradient (YlGn colormap) indicates yield variability, with 
darker greens corresponding to higher productivity zones and lighter yellow areas representing 
lower yields. 

Spatial patterns reveal heterogeneity, possibly linked to variations in soil fertility, water 
availability, and microclimatic conditions. 

The map allows for quick identification of high- and low-yielding regions, useful for 
targeted management interventions. 
Discussion: 

The phenological curves (Figure 1) illustrate distinct temporal dynamics of vegetation 
indices (NDVI, EVI, and NDRE) across the rice-growing season. NDVI showed a gradual 
increase from early growth stages, peaking in mid-season (0.89) before declining towards 
harvest, reflecting typical canopy development and senescence patterns. EVI followed a 
similar trend, albeit with slightly lower maximum values, aligning with its sensitivity to canopy 
structure and reduced saturation in high biomass conditions [16]. NDRE, being more 
responsive to chlorophyll content and leaf nitrogen status, demonstrated earlier saturation and 
a gradual decline after mid-season, indicating reduced nitrogen levels in later growth stages 
[17]. These phenological patterns align with previous findings that multi-temporal vegetation 
indices can effectively capture growth dynamics in paddy fields [18]. 

The observed versus predicted yield plots (Figure 2) highlight the performance 
differences between Random Forest (RF) and Support Vector Regression (SVR) models. RF 
achieved a higher coefficient of determination (R²), suggesting superior predictive 
performance, likely due to its robustness to non-linear relationships and capacity to handle 
multi-source input features [19] In contrast, SVR exhibited slightly lower predictive accuracy, 
which may be attributed to its sensitivity to kernel selection and parameter tuning when 
modeling agricultural datasets [20]. 

The spatial yield prediction map (Figure 3) offers a valuable tool for precision 
agriculture by visualizing the spatial heterogeneity of rice productivity across the study area. 
Such maps can guide targeted interventions, optimize input application, and enhance field 
management strategies [21][22][23]. However, spatial prediction accuracy depends heavily on 
the quality of both the training dataset and the remote sensing imagery used. Further validation 



                                                        Frontiers in Computational Spatial Intelligence 

Oct 2024|Vol 02 | Issue 04                                                               Page |165 

with ground-based yield measurements across multiple seasons would strengthen the reliability 
of these maps. 

Overall, the combination of time-series vegetation indices, advanced machine learning 
models, and spatial mapping demonstrates a robust framework for rice yield prediction. The 
integration of phenological monitoring with predictive analytics offers the potential for early 
yield forecasting, which could improve decision-making for farmers and policymakers alike. 
Conclusion: 

This study successfully demonstrated the utility of combining multi-temporal 
vegetation indices and advanced machine learning algorithms to predict rice yield with high 
accuracy. The phenological analysis of NDVI, EVI, and NDRE revealed important growth 
stage dynamics that are critical for capturing crop development and nitrogen status. Among 
the tested models, the Random Forest algorithm outperformed Support Vector Regression in 
yield prediction, highlighting its robustness in handling complex, nonlinear relationships 
within the remote sensing and agronomic data. 

Feature importance analysis further confirmed that peak vegetation vigor and 
cumulative canopy greenness are the most significant predictors of final yield, while 
chlorophyll-sensitive indices such as NDRE contribute valuable information related to plant 
nutrient status. The spatial mapping of predicted yields provides a practical tool for precision 
agriculture, enabling targeted field management to optimize resource use and improve 
productivity. 

Overall, this integrated approach offers a reliable framework for early-season rice yield 
forecasting, which could significantly enhance decision-making for farmers and agricultural 
planners. Future work should focus on validating these models across multiple seasons and 
diverse agro-ecological zones to improve generalizability and incorporate additional 
environmental variables. Furthermore, coupling such predictive models with real-time data 
streams could pave the way for dynamic crop monitoring systems, supporting sustainable and 
efficient rice production. 
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