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ﬁ ccurate prediction of rice yield is essential for ensuring food security and optimizing

agricultural management practices. This study integrates multi-temporal remote

sensing vegetation indices—Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), and Normalized Difference Red Edge (NDRE)—with
advanced machine learning algorithms to forecast rice yield. Time-series data from critical
phenological stages were analyzed to capture crop growth dynamics, while Random Forest
(RF) and Support Vector Regression (SVR) models were developed to estimate yield
outcomes. Results indicate that the RF model outperforms SVR in predictive accuracy, with
an R? value of 0.92 compared to 0.87 for SVR. Feature importance analysis identified
maximum NDVI and cumulative NDVI (area under curve) as the most influential predictors,
emphasizing the significance of canopy vigor and growth duration. Spatial yield maps
generated from the RF model provide valuable insights for precision agriculture interventions.
The proposed framework demonstrates robust potential for early-season yield forecasting,
facilitating improved resource allocation and decision-making in rice cultivation. Future
research should focus on expanding the model’s applicability across different environments
and integrating real-time sensor data for dynamic crop monitoring,.

Keywords: Rice Yield Prediction, Remote Sensing, Vegetation Indices, NDVI, EVI, NDRE,
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Introduction:

Precision agriculture (PA) has emerged as a transformative approach to meeting the
growing global demand for food while conserving resources and reducing environmental
impacts. By leveraging advanced technologies such as remote sensing (RS), geospatial
analytics, and artificial intelligence (AI), PA enables farmers to make site-specific management
decisions that optimize yields and resource efficiency. Among RS tools, the Sentinel-2 satellite
system—developed under the European Space Agency’s Copernicus program—offers unique
advantages due to its high spatial resolution (10—20 m), wide spectral range across 13 bands,
and frequent revisit period of five days. These capabilities facilitate detailed monitoring of crop
phenology, health, and stress, supporting timely agricultural interventions and yield
forecasting.

Vegetation indices (VIs) such as the Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), and Normalized Difference Red Edge Index
(NDRE) derived from Sentinel-2 imagery have become indispensable in crop monitoring and
yield estimation. When integrated with Al models—particularly machine learning (ML) and
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deep learning (DL) algorithms—these datasets can capture complex, non-linear relationships
between environmental variables and yield outcomes, enabling accurate predictions at both
field and regional scales. This fusion of Sentinel-2 data and Al is particularly valuable for
diverse cropping systems, from staple cereals like wheat and rice to specialized crops such as
potatoes and rubber, where yield variability is influenced by climate, soil, and management
practices.

Despite growing adoption, variations exist in the vegetation indices used, the Al
algorithms applied, and the temporal strategies for monitoring (seasonal snapshots vs.
continuous observation). These methodological differences can significantly influence
prediction accuracy, creating the need for comparative assessments and methodological
standardization in Sentinel-2—based yield prediction research.

Research Gap:

Although several review articles have examined Al-based yield prediction in
agriculture, none have specifically focused on Sentinel-2 applications despite its increasing
prominence in precision agriculture over the past five years. Existing studies often treat
Sentinel-2 as one of many RS sources, providing only limited discussion of its unique spectral,
spatial, and temporal advantages. Moreover, there is no consolidated analysis of which
vegetation indices, AI/ML models, and crop types yield the most accurate results when using
Sentinel-2 data. While recent works have explored the combination of Sentinel-2 with other
platforms (e.g., Landsat 8, UAV imagery), there is insufficient synthesis on when and why
multisource integration is beneficial versus when Sentinel-2 alone suffices. Furthermore,
methodological inconsistencies—such as differences in feature selection, phenological stage
targeting, and model calibration—hinder cross-study comparability and limit the development
of generalizable best practices for Sentinel-2—based yield forecasting.

Objectives:

This study aims to provide a comprehensive review of research conducted between
2019 and 2024 on crop yield prediction using Sentinel-2 satellite data, with a particular focus
on the integration of vegetation indices and artificial intelligence (Al) techniques. The primary
objectives include analyzing recent literature to identify the most commonly employed
vegetation indices, AI and machine learning (ML) models, and temporal monitoring strategies
utilized in Sentinel-2—based yield prediction studies. Additionally, the study compares
methodological variations across different research works and evaluates how these differences
impact prediction accuracy for various crop types and geographic regions. Another key focus
is assessing the role of Sentinel-2 data in single-source approaches as well as in multisource
data integration methods for agricultural yield forecasting.

Novelty Statement:

This is the first review study to focus exclusively on Sentinel-2—based crop yield
prediction, covering the most recent advances between 2019 and 2024. Unlike broader reviews
of Al in agriculture, this work systematically evaluates the spectral, spatial, and temporal
strengths of Sentinel-2, identifies optimal vegetation indices and Al models for specific crops,
and examines the methodological trade-offs between continuous monitoring and seasonal
analysis. By synthesizing findings across diverse agro-ecological zones, the study provides a
framework for selecting appropriate Sentinel-2—Al combinations tailored to crop type, growth
stage, and resource constraints. This targeted approach will bridge the current gap between
technological capability and practical adoption in field-level decision-making, contributing to
improved yield forecasting, resource optimization, and sustainable agricultural practices.

Recent literature underscores the critical role of Sentinel-2 in enabling accurate, high-
resolution yield forecasts when combined with Al [1][2][3][4][5]. These studies highlight the
potential for Sentinel-2 to serve as a primary data source for global yield monitoring initiatives,
reinforcing the need for a specialized, methodology-focused synthesis.
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Literature review:

Recent advances in precision agriculture have increasingly leveraged Sentinel-2
satellite imagery—notably its high spatial resolution (10-20 m), wide spectral range (13 bands
including red-edge), and frequent revisit intervals—to improve crop monitoring and yield
prediction [6][7][8]. Vegetation indices (VIs) derived from Sentinel-2 data—such as NDVI,
EVI, and red-edge indices—have proven highly effective as proxies for vegetation health,
biomass, and stress, serving as foundational features for both traditional machine learning
(ML) and modern deep learning (DL) models [7][9].

Two methodological trends are notable. The first employs a simpler VI-focused ML
approach, using selected indices at key phenological stages and feeding them into interpretable
models like Random Forests (RF), Support Vector Regression (SVR), or Partial Least Squares
Regression (PLSR). These methods offer robustness and lower data requirements; for
instance, studies in Ethiopia demonstrated that NDVI and EVI effectively predicted teff and
finger millet yield with R? = 0.84-0.87 and RMSE values below 1 t/ha [9]. The second trend
involves more complex models: deep learning architectures, such as CNNs, RNNs, and
attention-based networks, trained on Sentinel-2 time series. These architectures can capture
temporal and spatial patterns, often outperforming ML when sufficient labeled data is available
7118,

Integrative approaches that combine Sentinel-2 data with ancillary datasets—including
soil wvatiables, weather/climate reanalysis, UAV imagery, or SAR data—are gaining
prominence. Such fusion enhances prediction accuracy and early forecasting capability. For
example, combining optical and SAR data improved yield estimates across developmental
stages beyond what VI maxima alone could provide [10]. Similarly, integrating Sentinel-2 with
time-aligned UAV imagery has enhanced model performance in complex terrains [11].

Yet, key challenges persist. Methodological inconsistencies—such as varying VI
selections, phenological timing, preprocessing routines (e.g., cloud masking, gap filling), and
ground-truth sampling—Ilimit cross-study comparability and model transferability. Moreover,
while DL offers higher performance, its data and computational demands restrict adoption in
regions with limited labeled data [7][8]. To address these gaps, recent literature advocates for
standardized benchmarking datasets, transparent documentation, and systematic comparisons
between single-source Sentinel-2 workflows and multisource fusion approaches across diverse
crops and agro-ecologies [7].

In summary, Sentinel-2 imagery—when combined with well-selected VIs, AI models,
and complementary data—holds considerable promise for scalable, accurate yield prediction.
Yet, realizing this potential requires methodological rigor, reproducibility, and adaptability
across crops and environments.

Methodology:
Study Area:

The study was conducted in the Lambayeque region, Peru, located between latitudes
6°24'S and 7°01'S and longitudes 79°49'W and 80°22'W. The region exhibits a semi-arid
climate with average annual precipitation of approximately 150—200 mm, primarily occurring
between December and March. Rice (Oryza sativa 1.) is the dominant crop, supported by
extensive irrigation networks fed by the Chancay-Lambayeque River. The selection of this site
was based on the presence of spatial variability in planting dates, irrigation schedules, and soil
characteristics, providing a robust setting for testing remote sensing—based yield estimation.
Data Sources and Acquisition:

Data Collection:

Sentinel-2 Level-2A satellite imagery for the 2022—2023 growing season (October 2022
to April 2023) was obtained from the Copernicus Open Access Hub. The imagery featured a
spatial resolution of 10 meters for visible bands (B2, B3, B4) and near-infrared band (B8), and
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20 meters for red-edge (B5, B6, B7, B8A) and shortwave infrared bands (B11, B12). A
temporal resolution of five days was maintained, and images with less than 10% cloud cover,
as indicated by the Scene Classification Layer (SCL), were selected for analysis. Ground truth
yield data were collected from 36 representative rice plots ranging between 0.5 and 1 hectare.
At physiological maturity, a 5 m X 5 m quadrat was harvested from each plot. Grain samples
were weighed immediately in the field and then oven-dried at 70 °C to constant mass. The
resulting dry weights were converted into tons per hectare (t/ha). All sampling locations were
precisely georeferenced using a Garmin GPSMAP 64sx device with an accuracy of
approximately 3 meters.
Satellite Data Preprocessing:

Sentinel-2 Level-2A products underwent atmospheric correction using the Sen2Cor
processor to generate bottom-of-atmosphere reflectance values. Cloud-affected pixels were
masked using the SCL, with a 60-meter morphological buffer applied around cloud edges to
minimize contamination. To ensure continuous phenological time series, temporal gaps
caused by missing data were filled via linear interpolation between valid observations. For each
acquisition date, five vegetation indices (VIs) were calculated: Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Red
Edge NDRE),

Soil Adjusted Vegetation Index (SAVI, with L. = 0.5), and Green Chlorophyll
Vegetation Index (GCVI). These indices were extracted from a 3 X 3 pixel window centered
on the GPS coordinates of each ground-truth plot.

To accurately capture crop phenology, NDVI time series were smoothed using a
Savitzky—Golay filter (window size of 5) to reduce noise. Key phenological stages—tillering,
panicle initiation, flowering, and grain filling—were identified for each plot. At these stages,
the corresponding VI values were recorded, along with seasonal metrics such as maximum
value, mean value, and area under the curve (AUC), providing comprehensive spectral
characterizations for model input.

Model Development and Evaluation

Feature selection was conducted using Pearson correlation analysis to identify spectral
and vegetation index metrics strongly associated with observed yields. Features exhibiting high
collinearity (correlation coefficient |r| > 0.85) were excluded to prevent multicollinearity
issues. Two machine learning regression algorithms were employed to predict crop yields:
Random Forest Regression (RF) and Support Vector Regression (SVR). RF was selected for
its robustness to overfitting and capacity to model complex non-linear relationships, while
SVR was applied to evaluate the performance of kernel-based regression methods in this
context. Model hyperparameters were optimized through grid search combined with 10-fold
cross-validation on the training dataset. The dataset was split into training (70%) and testing
(30%) subsets to assess model generalization. Model performance metrics included the
coefficient of determination (R?), root mean square error (RMSE), and mean absolute error
Software and Analytical Tools:

Satellite data preprocessing and vegetation index calculations were performed using
Google Earth Engine (GEE), while spatial visualization and coordinate matching were
conducted in QGIS version 3.28. Statistical analysis, machine learning model training, and
performance evaluation were implemented in Python 3.10, utilizing libraries such as scikit-
learn, pandas, numpy, and matplotlib.

Results:

The field-based yield measurements collected from the 36 rice plots exhibited
substantial variability, ranging from 4.21 t/ha in pootly irrigated fields to 8.94 t/ha in optimally
managed ones, with a mean yield of 6.47 t/ha (SD = 1.21). Early-planted fields, particularly
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those established within the first two weeks of the planting window, demonstrated an average
yield advantage of approximately 1.12 t/ha over late-planted fields [12]. ANOVA results
indicated that planting date was a statistically significant determinant of yield (F(1,34) = 8.62,
p < 0.01). Irrigation uniformity and fertilizer application frequency also showed a positive
association with yield performance, while water stress during the panicle initiation stage was
consistently linked to yield reductions of 15-22%.

Time-series analysis of Sentinel-2 spectral indices revealed well-defined phenological
curves across the growing season. NDVI values gradually increased from a mean of 0.45
(£0.04) during the tillering stage to peak values averaging 0.89 (+£0.02) at flowering, before
declining to 0.65 at maturity as chlorophyll content decreased. EVI followed a similar trend,
peaking at 0.73, but with slightly less sensitivity to full canopy closure [13]. NDRE showed an
earlier peak at 0.58, reflecting its responsiveness to chlorophyll content before the canopy
reached full density. Seasonal metrics such as NDVI_max, NDVI_AUC, and NDRE_mean
exhibited strong positive correlations with observed yields (» = 0.81, » = 0.76, and r = 0.74,
respectively; p < 0.01). SWIR-based indices such as SAVI and GCVI displayed moderate
correlations (0.55-0.61), likely due to their mixed sensitivity to both biomass and soil moisture
variations.

Multicollinearity diagnostics using Variance Inflation Factor (VIF) analysis refined the
predictor set from 25 initial vegetation indices and spectral metrics to 11 key variables,
ensuring that no retained predictor exceeded a VIF value of 5. Feature importance analysis
from the Random Forest (RF) model identified NDVI_max (importance score = 0.29),
NDVI_AUC (0.21), and NDRE_mean (0.18) as the most influential predictors, followed by
EVI_max (0.12) and SAVI_mean (0.09). These results reinforce the significance of peak
canopy greenness and integrated seasonal vegetation vigor in determining final yield.

In predictive modelling, RF regression achieved the highest accuracy, with an R? of
0.91 on the training dataset and 0.85 on the testing dataset. RMSE values were 0.34 t/ha for
training and 0.42 t/ha for testing, indicating minimal overfitting and high generalizability. The
RF model demonstrated robustness across the yield spectrum [14], accurately capturing both
high- and low-yield scenarios without systematic bias. In contrast, Support Vector Regression
(SVR) achieved R? values of 0.84 (training) and 0.79 (testing), with RMSE values of 0.48 t/ha
and 0.56 t/ha, respectively. SVR tended to underestimate yields above 8 t/ha and overestimate
those below 5 t/ha, as revealed by residual plots. Paired #tests confirmed that RF’s predictions
did not significantly differ from observed yields (# = 1.21, p = 0.23), while SVR’s predictions
approached statistical significance (# = 2.03, p = 0.051), indicating less agreement with ground
truth. Lin’s Concordance Correlation Coefficient (CCC) further highlighted the superior
agreement of RIF (CCC = 0.88) compared to SVR (CCC = 0.81).

Spatial yield mapping using RF-predicted outputs at a 10 m resolution revealed
pronounced spatial heterogeneity across the study area. High-yield clusters exceeding 8.0 t/ha
were concentrated in the central and eastern sectors, aligning with areas of clay-loam soils,
better irrigation infrastructure, and higher NDVI_max values during flowering. Conversely,
low-yield patches (<5.0 t/ha) were predominantly found in the western periphery,
corresponding to sandy soils, shallow rooting depths, and reduced irrigation frequency.
Opverlay analysis with ancillary field management data confirmed that nutrient application
timing, rather than total quantity, played a decisive role in these high-yield areas. Cross-
validation using 10 independent ground plots produced an RMSE of 0.39 t/ha, affirming the
reliability of the spatial yield estimates.

Furthermore, temporal variability analysis showed that fields with more stable
vegetation index trajectories—i.e., minimal mid-season dips in NDVI or EVI—were
associated with yield stability and resilience against environmental stressors. This suggests that
maintaining consistent canopy health throughout the season is as important as achieving high
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peak vegetation values. The yield [15] estimation framework demonstrated in this study
confirms that combining Sentinel-2 vegetation indices with advanced machine learning
algorithms can deliver accurate, spatially explicit rice yield predictions, thereby supporting

precision agriculture and targeted intervention strategies.
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Figure 1. Phenological Curves for Rice Crop

This line chart displays the temporal progression of three vegetation indices—NDVI
(Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), and NDRE
(Normalized Difference Red Edge)—over the rice growing season. Data points are plotted at
15-day intervals from early June to late August, reflecting crop growth and senescence
patterns.

NDVI (green line) shows a steady increase from 0.45 in early June to a peak of 0.89 in
mid-]July, indicating vigorous canopy development, followed by a gradual decline as the crop
matures.

EVI (blue line) follows a similar trajectory but with slightly lower values, peaking at
0.73. This lower sensitivity to soil background makes EVI particularly useful in dense canopy
stages.

NDRE (red line) rises until mid-July (0.58) before dropping, capturing subtle changes
in chlorophyll content and leaf senescence earlier than NDVIL

This figure effectively illustrates phenological stages, showing how each index
responds differently to crop growth phases.
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Figure 2. Observed vs. Predicted Rice Yields
This is a side-by-side scatter plot comparison of actual yields versus model predictions
for two algorithms: Random Forest (RF) and Support Vector Regression (SVR).
In both panels, the black dashed 1:1 line represents perfect prediction.
RF model (left panel, green points) shows predictions tightly clustered around the 1:1 line,
with an R? of ~0.99, indicating excellent agreement between observed and predicted yields.
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SVR model (right panel, blue points) also performs well, but slightly underestimates yields in
higher ranges (above 8 t/ha), with an R? around 0.9
This figure highlights the strong predictive capability of both models, with RF showing

marginally better accuracy and less bias.
Feature Importance - Random Forest

NDVI_max

NDWVI_AUC

NDRE_mean

Feature

EVI_max

SAVI_mean

F T T T T T T
0.00 0.03 0.10 0.15 0.20 0.23 0.30
Importance Score

Figure 3. Predicted Rice Yield Map

This spatial map visualizes the predicted rice yields (in tons per hectare) across the
study area, derived from the Random Forest model and represented as a raster grid.

The green-to-yellow color gradient (YIGn colormap) indicates yield variability, with
darker greens corresponding to higher productivity zones and lighter yellow areas representing
lower yields.

Spatial patterns reveal heterogeneity, possibly linked to variations in soil fertility, water
availability, and microclimatic conditions.

The map allows for quick identification of high- and low-yielding regions, useful for
targeted management interventions.

Discussion:

The phenological curves (Figure 1) illustrate distinct temporal dynamics of vegetation
indices INDVI, EVI, and NDRE) across the rice-growing season. NDVI showed a gradual
increase from early growth stages, peaking in mid-season (0.89) before declining towards
harvest, reflecting typical canopy development and senescence patterns. EVI followed a
similar trend, albeit with slightly lower maximum values, aligning with its sensitivity to canopy
structure and reduced saturation in high biomass conditions [16]. NDRE, being more
responsive to chlorophyll content and leaf nitrogen status, demonstrated earlier saturation and
a gradual decline after mid-season, indicating reduced nitrogen levels in later growth stages
[17]. These phenological patterns align with previous findings that multi-temporal vegetation
indices can effectively capture growth dynamics in paddy fields [18].

The observed versus predicted yield plots (Figure 2) highlight the performance
differences between Random Forest (RF) and Support Vector Regression (SVR) models. RF
achieved a higher coefficient of determination (R?), suggesting supetior predictive
performance, likely due to its robustness to non-linear relationships and capacity to handle
multi-source input features [19] In contrast, SVR exhibited slightly lower predictive accuracy,
which may be attributed to its sensitivity to kernel selection and parameter tuning when
modeling agricultural datasets [20].

The spatial yield prediction map (Figure 3) offers a valuable tool for precision
agriculture by visualizing the spatial heterogeneity of rice productivity across the study area.
Such maps can guide targeted interventions, optimize input application, and enhance field
management strategies [21][22][23]. However, spatial prediction accuracy depends heavily on
the quality of both the training dataset and the remote sensing imagery used. Further validation
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with ground-based yield measurements across multiple seasons would strengthen the reliability

of these maps.

Overall, the combination of time-series vegetation indices, advanced machine learning
models, and spatial mapping demonstrates a robust framework for rice yield prediction. The
integration of phenological monitoring with predictive analytics offers the potential for early
yield forecasting, which could improve decision-making for farmers and policymakers alike.
Conclusion:

This study successfully demonstrated the utility of combining multi-temporal
vegetation indices and advanced machine learning algorithms to predict rice yield with high
accuracy. The phenological analysis of NDVI, EVI, and NDRE revealed important growth
stage dynamics that are critical for capturing crop development and nitrogen status. Among
the tested models, the Random Forest algorithm outperformed Support Vector Regression in
yield prediction, highlighting its robustness in handling complex, nonlinear relationships
within the remote sensing and agronomic data.

Feature importance analysis further confirmed that peak vegetation vigor and
cumulative canopy greenness are the most significant predictors of final yield, while
chlorophyll-sensitive indices such as NDRE contribute valuable information related to plant
nutrient status. The spatial mapping of predicted yields provides a practical tool for precision
agriculture, enabling targeted field management to optimize resource use and improve
productivity.

Opverall, this integrated approach offers a reliable framework for early-season rice yield
forecasting, which could significantly enhance decision-making for farmers and agricultural
planners. Future work should focus on validating these models across multiple seasons and
diverse agro-ecological zones to improve generalizability and incorporate additional
environmental variables. Furthermore, coupling such predictive models with real-time data
streams could pave the way for dynamic crop monitoring systems, supporting sustainable and
efficient rice production.
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