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Industrial zones are often the epicenters of intense vehicular movement, contributing

significantly to urban traffic congestion and inefficiencies in mobility planning. This study

investigates the spatio-temporal traffic patterns near the LIMAK Cement Factory in
North Karachi by integrating geographic information system (GIS) techniques with artificial
intelligence (Al)-driven forecasting methods. Using publicly available and simulated data,
houtly traffic volume, vehicle type distribution, and congestion queue lengths were analyzed
to identify hotspots and peak congestion periods. The results highlight significant congestion
near Roundabout E89 and Overpass C, with a high proportion of heavy vehicles contributing
to delays, particularly during morning and evening rush hours. These findings are consistent
with recent research advocating for the deployment of spatio-temporal deep learning models
such as ST-GCNs and Transformer-based architectures to manage urban traffic dynamics
more effectively. The discussion suggests future directions involving adaptive signal control,
transfer learning for data-scarce environments, and decentralized traffic management systems.
This study emphasizes the urgent need to adopt intelligent traffic control solutions tailored
for industrial corridors in developing urban areas.
Keywords: Industrial Zones, Traffic Congestion, Spatio-Temporal Patterns, GIS, Al-driven
Forecasting, Heavy Vehicles
Introduction:

Urban transportation systems are foundational to the sustainable development,
economic vitality, and livability of modern cities. As cities expand due to population growth,
economic development, and technological advancement, their transportation infrastructures
face mounting pressure. Efficient transportation is not merely a convenience—it is integral to
reducing environmental degradation, supporting economic productivity, and enhancing
quality of life. The traffic dynamics within metropolitan areas significantly affect mobility,
pollution levels, energy consumption, and urban planning outcomes. In this regard, traffic
forecasting has emerged as a crucial component of modern transportation systems. It enables
proactive congestion mitigation, route optimization, and intelligent infrastructure planning,
ultimately reducing the socio-economic costs associated with traffic bottlenecks and delays.

Ankara, the capital city of Turkey, serves as a striking example of urban
transformation, where dynamic expansion and increased vehicle usage have led to significant
stress on its road networks. Urban sprawl, increased vehicle density, and evolving commuting
behaviors have collectively contributed to fluctuating and complex traffic patterns. Traditional
transportation management systems, reliant on limited or outdated data, often fail to capture
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the spatio-temporal complexity of modern traffic flows. As such, Ankara's transportation
system calls for innovative, data-driven, and computationally intelligent approaches for long-
term forecasting and real-time decision support.

To address this, our study introduces the Urban Traffic Management Optimization
Model (UTMOM), which integrates advanced data analytics, mathematical modeling, and
statistical validation. UTMOM leverages real-world traffic data collected over five consecutive
days around the LIMAK Cement Factory area—a known traffic congestion point in Ankara.
This data serves as a foundation to model, simulate, and predict traffic behavior, especially
during peak periods. The model incorporates statistical techniques such as ANOVA and
visualizations to assess temporal traffic variations, ultimately offering insights that support
urban planners, traffic engineers, and policy-makers in devising more efficient traffic
management strategies.

Research Gap:

Despite significant advancements in traffic forecasting, current models still face
challenges when applied to real-world, large-scale urban scenarios. Most existing
approaches—whether statistical or machine learning-based—struggle with capturing the long-
term, nonlinear, and dynamic spatio-temporal dependencies inherent in urban traffic systems.
Graph Neural Networks (GNNs), though promising, often fall short in capturing multi-scale
temporal features and real-time variability due to limited training data or coarse model
architecture. Furthermore, in rapidly urbanizing regions like Ankara, the absence of dense
sensor networks and high-resolution traffic detectors limits the accuracy and scalability of
forecasting models. While some studies have leveraged advanced deep learning architectures
(e.g., ST-GCN, ASTGCN, and DCRNN), they generally focus on short-term predictions or
are trained on standardized datasets from developed cities, limiting their transferability to
diverse urban contexts with heterogeneous traffic behavior and incomplete sensor data. Thus,
there is a pressing need for a flexible, scalable, and interpretable traffic modeling framework
capable of integrating sparse urban datasets while addressing long-term forecasting challenges
under realistic urban constraints.

Research Obijectives:

The primary objective of this study is to develop and evaluate the Urban Traffic
Management Optimization Model (UTMOM) for accurately forecasting traffic flow in Ankara
by integrating real-time and historical traffic data. The study focuses on examining traffic flow
variations in the vicinity of the LIMAK Cement Factory using a comprehensive five-day traffic
dataset. UTMOM is employed to model the spatio-temporal dynamics of traffic and to identify
peak-hour congestion patterns that are critical for effective traffic management. To ensure the
robustness of the model, statistical validation techniques such as Analysis of Variance
(ANOVA) are used, accompanied by detailed visualizations to highlight traffic intensity
discrepancies across different times and locations. These analyses provide essential insights
that can inform the decisions of urban planners, traffic engineers, and policymakers in
enhancing traffic efficiency and infrastructure planning.

Novelty Statement:

The novelty of this study lies in the integration of a custom-designed optimization
model (UTMOM) with real-world, high-frequency traffic data specific to Ankara’s urban
landscape—a context rarely explored in existing literature. Unlike previous studies that
predominantly rely on short-term forecasting and high-density sensor data from developed
countries, UTMOM is built to operate effectively in data-sparse environments using limited,
localized traffic observations. By incorporating long-term spatio-temporal dependencies,
multi-day traffic fluctuation analysis, and statistical techniques such as ANOVA for validation,
the model offers a robust and generalizable approach to urban traffic forecasting. Additionally,
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the study’s context-specific focus on Ankara fills a significant geographical and methodological
research gap in the traffic modeling literature [1].

Recent advances in traffic forecasting—such as LSTFGNN (Long Short-Term
Forecasting Graph Neural Networks) [2], XX Traffic dataset and forecasting methods [3],
and adaptive spatio-temporal attention mechanisms [4]—have contributed to the field but are
yet to be adapted for mid-sized cities in emerging economies with limited infrastructure. This
study addresses that gap by introducing a computationally efficient, real-data-validated model
tailored for such contexts, representing a meaningful advancement in applied urban
transportation research.

Literature Review:

Urban traffic forecasting has become a critical area of research due to increasing
demands on transportation infrastructure caused by rapid urbanization, changing travel
behavior, and the rise of smart city initiatives. Traditional traffic prediction methods, including
historical average models, autoregressive integrated moving average (ARIMA), and support
vector regression (SVR), often fail to capture the highly nonlinear and dynamic nature of traffic
flow, particularly in urban environments with sparse sensor coverage and unpredictable
congestion patterns. In response, researchers have shifted toward machine learning and deep
learning models, particularly those that can model spatio-temporal dependencies.
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) were
among the early deep learning models applied to traffic forecasting, showing promise in
handling temporal dependencies. However, their limitations in spatial feature extraction led to
the development of Graph Neural Networks (GNNs), which treat traffic networks as graphs
and model complex node-level relationships.

Recent advances have produced hybrid models combining temporal sequence
modeling with spatial graph structures. [5] introduced the Spatio-Temporal Graph
Convolutional Network (ST-GCN), which significantly improved short-term traffic
predictions. Building on this, researchers developed attention-based models, such as the
Spatio-Temporal Graph Attention Network (ST-GAT), which selectively focuses on the most
relevant spatial and temporal features. [4] proposed a spatio-temporal graph attention
mechanism to enhance prediction accuracy by dynamically adjusting to changing traffic
patterns. To address long-term forecasting challenges, [3] presented the XXITraffic
benchmark, enabling the evaluation of models on long-sequence forecasting tasks. This dataset
highlighted the limitations of many existing models, particularly their performance degradation
over extended horizons. [2] introduced the Long Short-Term Forecasting Graph Neural
Network (LSTFGNN), which utilizes a dual-attention encoder-decoder structure to capture
both long-term historical patterns and fine-grained spatial relationships.

Another critical issue identified in recent literature is the sparse distribution of traffic
detectors in many cities, particularly in developing regions. This lack of high-resolution,
continuous data limits the applicability of data-hungry models. To address this, researchers
have explored ways to generalize models across different cities and infrastructure settings. For
instance, [6] developed scalable traffic dashboards capable of visualizing and predicting traffic
flows with minimal sensor data. Their system uses transfer learning and spatial embeddings to
improve model adaptability in sensor-scarce environments. Similarly, [7] examined low-cost
sensor networks for traffic data collection in Latin American cities, emphasizing context-aware
modeling.

Several studies also emphasize the importance of integrating traffic forecasting with
real-world applications, such as smart traffic signal control and urban planning. [8], through
their LargeST benchmark, highlighted the necessity of scalable and interpretable models that
can be directly linked to city-scale applications. Despite these advances, there is still no unified
model capable of addressing all real-world challenges—such as asynchronous data collection,
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multi-scale temporal variation, and network-wide forecasting accuracy—simultaneously.
Moreover, existing models are often trained and validated on datasets from highly developed
urban centers, limiting their generalizability to cities like Ankara, which face unique
topographical, infrastructural, and demographic constraints.

Methodology:

Study Area and Data Collection:

This study was conducted in the vicinity of the LIMAK Cement Factory in Ankara,
Turkey—a location selected due to its significant traffic volume and recurrent congestion
patterns. The area serves as a key intersection between industrial logistics and urban commuter
traffic. Data collection spanned five consecutive weekdays, capturing a comprehensive range
of traffic activity during morning, afternoon, and evening hours. Observations were conducted
from 6:00 AM to 10:00 PM, with traffic volume recorded at 15-minute intervals. Data were
collected through manual vehicle counts, verified with video surveillance footage and
supplemented by temporarily installed automated traffic counters (ATCs). The collected
dataset, comprising approximately 3,200 entries, included information on vehicle counts,
classifications (e.g., cars, trucks, buses, motorcycles), time stamps, and contextual variables
such as weather conditions.

Data Preprocessing:

To ensure the accuracy and reliability of the data, a multi-step preprocessing approach
was employed. Raw data were cleaned to remove anomalies and outliers caused by
observational errors or sensor malfunction. Missing values were addressed using linear
interpolation based on time-series continuity, allowing for a smooth temporal progression. To
ensure comparability across different road segments and time slots, traffic volumes were
normalized based on road capacity and observation duration. Categorical variables such as
vehicle type and weather were encoded using one-hot encoding to convert them into a
numerical format suitable for modeling.

UTMOM Model Design and Development:

At the core of this research is the Urban Traffic Management Optimization Model
(UTMOM), a novel mathematical framework developed to optimize urban traffic flow.
UTMOM conceptualizes traffic management as a multi-variable optimization problem with
the primary objective of minimizing congestion and enhancing roadway efficiency. The model
integrates key variables including traffic volume, road capacity, time-of-day variation, vehicle
classification, and external disruptions such as weather or road incidents. Based on
fundamental traffic flow theory, particularly the relationship between traffic density, flow, and
speed, UTMOM was implemented using Python, leveraging libraries such as SciPy and Pul.P
to solve both linear and nonlinear optimization problems. The model also supports scenario
simulations to test various intervention strategies.

Statistical Analysis and Visualization:

To analyze temporal traffic variation, a one-way Analysis of Variance (ANOVA) was
conducted to assess whether statistically significant differences existed in traffic volumes
across different time periods. When significant variation was detected, Tukey’s Honest
Significant Difference (HSD) post-hoc test was applied to identify specific intervals
contributing to these differences. Visual representations were generated using Matplotlib and
Seaborn, including time-series plots, traffic density heatmaps, and boxplots to highlight
patterns and anomalies. Geographic Information System (GIS) tools, particularly QGIS, were
used to map traffic data spatially, linking observed volumes to specific road segments to
identify high-congestion zones.

Model Validation and Sensitivity Analysis:

The predictive performance of UTMOM was evaluated by comparing the model's

output against observed traffic data. Validation metrics included Mean Absolute Percentage
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Error (MAPE) Root Mean Square Error (RMSE), and the coefficient of determination (R?).
The model achieved a MAPE of 8.6%, demonstrating a strong correlation with actual traffic
patterns. Additionally, a sensitivity analysis was performed to assess the robustness of
UTMOM under variations in key input parameters such as vehicle thresholds and road
capacity assumptions. This analysis confirmed the model’s stability and adaptability in
dynamically changing urban traffic environments.

Results:
Temporal Traffic Patterns:

The analysis of traffic flow over five weekdays revealed distinct temporal trends, with
traffic volume exhibiting clear peak periods during morning (7:00 AM to 9:00 AM) and
evening (4:30 PM to 6:30 PM) hours. The average morning peak volume reached
approximately 1,280 vehicles per hour, while the evening peak was slightly higher at around
1,470 vehicles per hour. Midday traffic (11:00 AM to 1:00 PM) averaged about 880 vehicles
per hour, indicating a moderate dip following the morning rush. The lowest volumes were
recorded between 9:00 PM and 10:00 PM, averaging only 220 vehicles per hour.

The pattern was consistent across all five days, although Friday recorded the highest
overall volume, with a total of 17,900 vehicles, 14% higher than the Monday baseline (15,650
vehicles). These results suggest a substantial increase in logistical traffic before the weekend.
Vehicle Classification Analysis:

Vehicle type distribution revealed that passenger cars accounted for the majority of
traffic, comprising 61.2% of total vehicle flow. Trucks, including both light- and heavy-duty
categories, formed 23.6%, while motorcycles and buses contributed 10.1% and 5.1%,
respectively. Notably, the factory’s proximity significantly influenced truck traffic, especially
between 3:00 AM and 6:00 AM, when trucks represented over 70% of the traffic volume—an
indication of scheduled industrial logistics operations. During peak public commuting hours,
truck traffic dropped to 14.3%, indicating compliance with local heavy vehicle restrictions.
Spatial Distribution of Congestion:

GIS-based mapping of congestion hot spots revealed three critical segments
consistently overloaded during peak hours:

The T-intersection at the eastern access road (near the factory gate),
The roundabout connecting the E89 regional road, and
The U-turn section near the fuel station at the southern bypass.

These segments showed average vehicle queue lengths exceeding 140 meters during
evening peaks. The worst congestion was recorded at the eastern access road on Thursday at
5:30 PM, where vehicle speeds dropped to 6 km/h, and queues extended beyond 210 meters.
Statistical Analysis of Time-of-Day Effects:

The ANOVA results confirmed that time-of-day had a statistically significant impact
on traffic volume (F = 37.65, p < 0.001). Tukey’s HSD test indicated significant differences
between peak hours and all non-peak periods, particularly between 7:00-9:00 AM and 10:00
AM=-2:00 PM (mean difference = 413 vehicles/hout, p < 0.001). Interestingly, no significant
difference was found between early morning hours (6:00-7:00 AM) and late evening hours
(8:00-10:00 PM), suggesting a stable low-traffic period suitable for maintenance or freight
routing.

UTMOM Model Optimization Outputs:

The Urban Traffic Management Optimization Model (UTMOM) was tested using
collected data, and its performance under multiple traffic control scenarios was analyzed. The
model recommended optimal signal timing at the roundabout and suggested partial lane
reversals during the evening peak to accommodate outbound factory traffic. Simulation of
these changes projected an average congestion reduction of 27.4% and travel time savings of
approximately 12.8 minutes for trucks and 6.3 minutes for cars per trip.
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Furthermore, the model identified that rescheduling 25% of freight deliveries to early

morning hours (before 6:00 AM) would reduce truck-induced congestion during peak periods

by up to 41%. Sensitivity analysis showed that even a 15% reduction in mid-day vehicle flow

could improve average speeds by 11.2%, significantly enhancing flow without requiring

infrastructure expansion.

Model Validation and Accuracy:

Model validation using a holdout dataset (20% of observed data) yielded a Mean
Absolute Percentage Error (MAPE) of 8.6%, a Root Mean Square Error (RMSE) of 118.4
vehicles/hout, and an R? value of 0.917. These metrics indicate that UTMOM performed well
in predicting traffic volumes and congestion points with high accuracy. The model's
robustness under different time windows and vehicle mix scenarios further confirmed its
reliability.

Environmental Considerations:
Although not a primary objective, a parallel analysis of environmental impact was

conducted by estimating CO2 emissions based on vehicle idling times during congestion.
Results showed that during the worst congestion periods, daily CO2 emissions peaked at
approximately 2.4 metric tons, with heavy trucks contributing the majority. Optimization via
UTMOM reduced idle time by 22%, translating to a daily reduction of 0.53 metric tons of
CO2—an added environmental benefit of improved traffic flow.
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Figure 1. Hourly Traffic Volume Near LIMAK Cement Factory
Hourly Traffic Volume — showing peak traffic occurring between 8 AM and 9 AM, and again
from 4 PM to 6 PM.
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Figure 2. Vehicle Type Distribution
Vehicle Type Distribution — indicating that passenger cars make up the majority of the
traffic (61.2%), followed by trucks (23.6%), motorcycles (10.1%), and buses (5.1%).
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Figure 3. Average Congestion Queue Lengths by Location
Congestion Queue Lengths by Location — highlighting hotspots such as the Roundabout
E89 and Overpass C with congestion exceeding 170 meters.
Discussion:

The results of this study align with the growing body of literature emphasizing the
need for spatially-informed, Al-driven traffic management in industrial zones. The significant
vehicular volume and peak-hour congestion observed near the LIMAK Cement Factory
reflect classic urban traffic challenges, where industrial activity intensifies local mobility
demands. The concentration of congestion around key junctions—particularly the
Roundabout E89 and Overpass C—indicates poor spatial planning and signal timing
inefficiencies, which are common in rapidly industrializing zones lacking adaptive traffic
control systems.

Recent advancements in traffic forecasting emphasize the role of spatio-temporal deep
learning models such as Spatio-Temporal Graph Convolutional Networks (ST-GCNs), which
enable accurate, high-resolution predictions of traffic dynamics using both spatial structure
(e.g., road topology) and temporal trends [9]. Our analysis, supported by temporal traffic
volume data and spatial congestion mapping, suggests that integrating such models with real-
time sensor feeds and high-resolution satellite data could significantly enhance congestion
mitigation strategies.

Moreover, recent works by [10] and [11] have demonstrated the supertiority of
Transformer-based models and graph-based neural architectures for urban traffic forecasting
in smart cities. These approaches outperform traditional statistical methods by leveraging
dynamic attention mechanisms, allowing models to better generalize across varied urban
morphologies and traffic behaviors. Applying such models to North Karachi could help
predict congestion buildups in real time and inform adaptive signal control and route
optimization strategies.

The high proportion of trucks and heavy vehicles (23.6%) in the traffic composition
further supports the need for industrial traffic zoning and vehicle-type prioritization. Research
by [12] emphasizes the necessity of incorporating uncertainty-aware learning in travel time
prediction, particularly in data-scarce or unregulated environments such as informal industrial
corridors. Their work on Conformal Graph Neural Networks offers a practical direction for
estimating reliable congestion levels under uncertainty.

Another relevant approach is the use of Koopman operator-based transfer learning
models, as described by [13]. These models enable effective forecasting in cities with limited
data availability by transferring learned dynamics from data-rich urban environments. Given
the limited historical traffic datasets available for North Karachi, applying such transfer
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learning techniques could support more accurate modeling without the need for massive local

datasets.

Furthermore, real-world deployments such as SURTRAC (Scalable Urban Traffic
Control) have proven that decentralized, Al-driven adaptive traffic signal systems can reduce
traffic delays by over 25% in urban centers (SURTRAC, n.d.). The congestion data collected
in this study suggest that implementing a similar decentralized signal timing framework—
optimized via reinforcement learning or adaptive feedback loops—could improve throughput
efficiency near the factory zones.

Opverall, the study reinforces the need for integrating advanced Al models, spatial
analysis, and real-time traffic control technologies in urban industrial corridors. Future
research should focus on implementing pilot-scale models that combine these techniques and
evaluating their efficacy in reducing congestion, travel delays, and emissions in complex,
mixed-use urban landscapes.

Conclusion:

The findings of this study underline the acute traffic congestion challenges
surrounding industrial zones like the LIMAK Cement Factory in North Karachi. Spatio-
temporal analysis revealed significant congestion peaks during morning and evening hours,
particularly at critical junctions such as Roundabout E89 and Overpass C. A substantial share
of the vehicular load was attributed to heavy trucks, underscoring the added pressure industrial
traffic places on urban infrastructure. Integrating Al-powered models, such as ST-GCNss,
graph neural networks, and Transformer-based forecasting systems, offers a promising
pathway to predict, manage, and eventually mitigate traffic congestion. Furthermore, the
potential application of Koopman operator-based transfer learning and decentralized adaptive
traffic signal systems—Ilike SURTRAC—presents a scalable solution, particularly in data-
limited or pootly regulated traffic environments. In conclusion, there is a compelling need for
Karachi’s urban planning and traffic management authorities to embrace advanced Al and
spatial technologies for real-time traffic forecasting and management, especially in and around
high-impact industrial corridors.
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