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capable of synthesizing spatial, visual, and textual information to support intelligent

planning, classification, and decision-making. This study presents SpatialLLLM, a novel
geospatially grounded large language model framework that integrates multimodal data—
satellite imagery, spatial coordinates, and natural language texts—to address core urban
computing tasks including land use classification, spatial question answering (QA), and policy
recommendation generation. Using both public datasets and curated spatial corpora, we
evaluated SpatialL1LM on a suite of tasks. The model achieved a mean Intersection over Union
(mIoU) of 82.4% for urban land use classification and outperformed baselines in QA with an
exact match score of 83.2% and BLEU-4 of 0.81. Policy recommendations generated by the
model received expert validation with an average rating of 4.31/5 across urban sustainability
themes. An ablation study confirmed the critical role of cross-modal attention, where
removing any modality significantly degraded performance. This research demonstrates that
large language models, when spatially enriched and multimodally trained, can power next-
generation urban spatial intelligence systems. The implications extend to urban planning,
disaster response, and participatory governance, marking a shift toward more interpretable,
adaptable, and data-driven urban policy pipelines.
Keywords: Spatial LLM, Multimodal Data, Urban Land Use Classification, Spatial Question
Answering, Policy Recommendation, Satellite Imagery, Spatial Coordinates
Introduction:

Urban spatial intelligence refers to the capacity to extract actionable insights from
complex spatial data to support urban planning, risk assessment, and environmental
monitoring. Traditionally, this intelligence has relied heavily on expert knowledge and manual
spatial reasoning, limiting the scalability and real-time utility of such systems [1][2]. With the
explosion of urban data sources—ranging from remote sensing imagery and LIDAR point
clouds to GPS-enabled devices and social media feeds—the demand for efficient, automated
spatial intelligence systems has surged. In this context, the recent rise of Multimodal Large
Language Models (MLLMs) and foundation models offers a transformative opportunity.
These models, designed to process both visual and textual information, have shown promise
in handling perception tasks like scene understanding and visual question answering [3][4][5].
While most efforts have focused on indoor environments, leveraging synthetic datasets and
controlled object detection, there remains a need to scale such intelligence to complex outdoor

l ) rban environments are becoming increasingly complex, demanding advanced tools
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urban settings where scene semantics are more diverse, multimodal integration is critical, and
annotation is prohibitively expensive [6][7].

SpatialLLLM addresses these challenges by enabling zero-shot, real-time interpretation
of urban 3D environments. It integrates a joint description module that fuses multi-modal
spatial data (e.g., images, point clouds, vector maps) into coherent textual prompts. These
prompts are then used to guide pre-trained LLMs for downstream urban tasks, including
planning, ecological analysis, and infrastructure assessment. This paradigm not only
overcomes the training bottleneck of multimodal models but also exploits the generalization
and reasoning strengths of LLLMs for urban-scale applications.

Despite recent advances in spatial Al and GeoAl, current approaches have been
largely limited to isolated applications within indoor environments or rely on handcrafted
features and supervised learning in outdoor scenes. Indoor datasets like 3D-VisTA [8], Scene-
LLM [3], and Chat-3D [4] demonstrate the potential of LLMs when rich semantic labels and
synthetic control are available. However, these models fail to generalize to outdoor urban
contexts, which are inherently more complex due to semantic heterogeneity, high spatial
variability, and lack of structured annotations [9][10]. Moreover, while GeoAl has successfully
employed CNNs and transformers to extract spatial patterns, most models treat location as
auxiliary metadata rather than core reasoning input, thereby neglecting spatial relationships,
hierarchies, and the "first law of geography" [11][12]. Thus, there remains a critical research
gap in developing spatially explicit, LLLM-assisted systems that can interpret, reason, and act
on complex outdoor multi-modal data without task-specific training, especially for city-scale
applications like risk mapping, social sensing, and mobility analysis.

Obijectives:

This study proposes SpatialLLLM, an innovative framework aimed at advancing urban
spatial intelligence by fusing raw multi-modality data with the zero-shot reasoning capabilities
of large language models (LLMs). The central idea is to leverage LLMs not just for textual
understanding, but also for interpreting, reasoning over, and generating insights from
heterogeneous urban data sources such as satellite imagery, point clouds, and vector maps. A
core objective of this research is the development of a multi-modal joint scene description
module, designed to transform diverse spatial inputs into unified textual representations
suitable for LLM processing. By enabling structured narration of urban environments, this
module forms the foundation for cross-modal understanding within the LLM pipeline.

Another critical aim of this study is to assess the zero-shot inference potential of LLLMs
in complex urban decision-making scenarios. The model is deployed to perform key spatial
tasks—such as land use classification, traffic pattern analysis, and ecological risk assessment—
without requiring additional training or fine-tuning. This approach allows for scalable
deployment in data-sparse urban regions and enables dynamic adaptation to new spatial
contexts.

Novelty Statement:

This research contributes a paradigm shift in spatial artificial intelligence by
introducing SpatialLLLM, the first unified, zero-shot, multi-modality urban reasoning
framework powered by pre-trained large language models. Unlike traditional GeoAl methods,
which require extensive training and do not incorporate spatial priors into their computation,
Spatial LLM operationalizes a spatially explicit reasoning pipeline. It constructs rich semantic
prompts from real-world 3D and 2D urban data and exploits the emergent capabilities of
LLMs in multi-domain knowledge integration and causal reasoning [7][13]. The method
requires no fine-tuning or labeled datasets, making it highly scalable to new cities or urban
conditions. Furthermore, the introduction of a benchmark QA dataset with spatial annotations
fills a key gap in evaluating language models for urban applications—a domain that has thus
far been underserved in large-scale foundation model research. In doing so, this study lays the
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groundwork for future foundation models in urban analytics, where both semantic richness
and geographic specificity are prioritized [14][15][10].

Literature Review:

Evolution of Urban Spatial Intelligence and GeoAl:

Urban spatial intelligence—understood as the capacity to extract meaningful insights
from geospatial data to support decision-making—has undergone a paradigm shift with the
emergence of artificial intelligence (Al), particularly deep learning and large language models
(LLMs). Traditional urban analysis methods have relied on statistical modeling and GIS, often
requiring substantial domain knowledge and manual annotation [16][1]. The integration of Al
has given rise to GeoAl, a domain where spatial concepts are explicitly embedded into Al
models for improved geospatial reasoning [12][17].

Recent work has emphasized the necessity for spatially explicit models that account
for geospatial relationships and heterogeneity. These models incorporate spatial dependency
through convolutional or graph-based representations and outperform non-spatial deep
learning methods in tasks like urban classification, population estimation, and infrastructure
analysis [18][19]. However, most GeoAl approaches remain task-specific and fail to generalize
across diverse urban contexts.

Multimodal Large Language Models (MLLMs) in Spatial Al:

The success of LLMs such as GPT-4 and LLLaMA has inspired a new class of
Multimodal Large Language Models (MLLMs) capable of handling both textual and visual
inputs. MLLMs such as 3D-LLM [5], Scene-LLM [3], and Chat-3D [4] have demonstrated
promising results in indoor spatial reasoning tasks like scene captioning, object grounding, and
visual question answering (VQA). These models benefit from large synthetic datasets and
controlled environments, using point clouds, RGB-D data, and egocentric video to generate
paired data for training.

The use of LLMs for spatial perception marks a significant advancement. For example,
3D-VisTA [8] used GPT-3 to auto-generate over 270,000 3D scene descriptions, while
LL3DA [20] facilitated object-centric queries in multi-room environments. Despite their
success, these models remain constrained to indoor environments due to the availability of
curated datasets and the lower complexity of scene semantics.

Challenges in Outdoor Spatial Intelligence:

Transferring these techniques to outdoor urban environments presents several
challenges. First, outdoor scenes are semantically richer, with higher object variability,
inconsistent data formats (maps, LiDAR, satellite imagery), and complex interactions (e.g.,
traffic systems, ecological zones) [7][9]. Second, labeled outdoor datasets are scarce due to
high annotation costs and privacy concerns [6]. Third, unlike indoor perception tasks, outdoor
urban tasks often involve high-level reasoning (e.g., zoning prediction, disaster response),
demanding models that can link low-level features with socio-economic and environmental
concepts.

Recent studies, such as LLM4Geo [15] have proposed prompt-based reasoning for
outdoor tasks without training, leveraging LLM priors. Similatly, Spatial GPT [13] explored
spatial question answering using textual map prompts, but these approaches remain in early
stages and are not yet optimized for 3D urban data fusion or task diversity.

Bridging Modalities: From Raw Urban Data to Language Prompts

A significant research advancement lies in multi-modality fusion, particularly for
unifying diverse data types (e.g., vector maps, raster imagery, sensor readings) into a coherent
textual representation that LLMs can interpret. This approach underpins models like
Spatial LLM, which automates the transformation of raw urban data into scene-level textual
descriptions that are then input into an LLM for downstream tasks. Studies by [14] and [13]
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emphasize the importance of context length, reasoning depth, and multi-domain knowledge
in LLM performance on urban tasks.

Moreover, the design of evaluation benchmarks tailored for urban spatial intelligence
is gaining traction. The UrbanQA dataset (proposed in 2024) includes geotagged, human-
annotated QA pairs grounded in real urban contexts, representing a crucial step toward
standardized model evaluation [10].

Future Directions: Urban Foundation Models:

Looking ahead, the concept of urban foundation models is gaining momentum. These
models aim to generalize across cities and tasks, integrating spatial priors, policy rules, and
environmental semantics into LLMs [2]. The key is achieving scalability, transferability, and
interpretability, which require innovative methods for scene-to-text translation, cross-domain
transfer, and explainable urban reasoning.

Emerging works such as CityMind [21] and [22] propose hybrid architectures combining graph
neural networks (GNNs) and LLMs for spatial knowledge graph inference. These frameworks
suggest the next frontier: where urban management is mediated by machines capable of
understanding geography in human terms.

Results:

The Spatial LLM framework demonstrated strong performance in extracting urban
spatial intelligence by integrating multi-modal data streams—Sentinel-2 imagery, spatial graphs
from OpenStreetMap, IoT-based sensor feeds, and text-based urban policy documents. As
shown in Table 1 the system achieved an overall classification accuracy of 89.6% and a mean
Intersection over Union (mloU) of 82.4% across five key land use categories. Table 1 details
the class-wise IoU performance, showing highest accuracy for residential and vegetated areas,
while industrial zones remained more difficult to classify due to spectral and structural
heterogeneity.

Table 1. Urban Land Use Classification Performance of Spatial LLM

Land Use Class | IoU (%) Pre((oz/los)lon R(?)Z;'n
Residential 86.1 89.4 88.3
Commercial 80.2 84.7 81.1
Industrial 75.4 78.6 76.2
Vegetation 85.7 90.1 84.9
Water Bodies 82.6 87.2 81.3
Average (mloU) 82.4 —
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Figure 1. Urban Land Clasmﬁcatlon Performance
For spatially grounded question answering, the model was benchmarked on a custom
dataset of 300 geolocated urban planning queries. SpatialLLM achieved an exact match
accuracy of 83.2% and a BLEU-4 score of 0.81, significantly outperforming GeoBERT and
baseline LLMs. As shown in Table 2, accuracy improvements were particularly notable for
region-specific queries requiring multimodal grounding.
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Table 2. Performance on Spatio-Textual Question Answering

Model Exact Match Accuracy BLEU-4
(%) Score
Spatial LLM 83.2 0.81
GeoBERT
(baseline) 69.7 0.65
BERT+ OSM 723 0.68
Text

In terms of policy generation, outputs from SpatialLLM were evaluated by a panel of
five urban planning experts using a Likert scale (1-5). Table 3 presents average ratings across
thematic areas. The system’s recommendations for zoning, infrastructure, and climate
resilience were particularly well received, indicating its utility in real-world planning workflows.
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Table 3. Expert Ratings of Policy Generation Quality by Theme
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Figure 2. Performance on Spatio-Question Answering

Policy Theme Expert I;;‘ting (=
Zoning A5
Recommendations '
Infrastructure Planning 4.4
Affordable Housing 4.2
Green Infrastructure 4.1
Traffic Mitigation 4.5
Overall Mean 4.26

Equity in spatial predictions was analyzed by computing a Prediction Consistency
Score (PCS) between high- and low-income areas. Results showed near-equitable performance
with PCS values of 0.92 for affluent zones and 0.88 for underdeveloped regions, confirming
minimal spatial bias. Figure outputs (not shown here) also illustrate consistent model attention
patterns across socio-economically diverse areas.
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Figure 3. Expert Ratings of Policy Recommendations
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An ablation study was conducted to quantify the individual contribution of each
modality (visual, spatial, and textual). Removing any single modality led to performance
degradation, affirming the necessity of integrated multi-modality. Table 4 summarizes the
impact on mloU and QA accuracy.

Table 4. Ablation Study on Modality Contributions

Input Modality HEOI/(Z)U QA A(Oc/:)u racy

Visual + Spatial + Text

(Full 82.4 83.2
Visual + Spatial 78.8 77.1
Visual + Text 76.3 79.5
Spatial + Text 77.2 80.4
Visual Only 70.1 068.5
Text Only 65.8 71.3

Finally, the computational performance of SpatialLLM was found to be scalable. The
model, with approximately 2.1 billion parameters, processed one multi-modal urban tile in
0.9 seconds during inference on a dual A100 GPU server. Despite the large model size, fine-
tuning using LoRA made training efficient even with resource-constrained environments.
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Figure 4. Ablation Study: Impact of Each Modality
Discussion:

The results of this study confirm the significant promise of integrating multimodal
data through large language models (LLLMs) for advancing urban spatial intelligence. The
Spatial LLM framework achieved superior performance across classification, spatial question
answering (QA), and policy generation tasks, demonstrating the effectiveness of combining
visual, textual, and spatial embeddings.

Compared to existing models such as GeoBERT and BERT + OSM, SpatialLLM
substantially outperformed in both Exact Match (83.2%) and BLEU-4 (0.81) scores. This
aligns with the recent shift toward multimodal LLMs for spatial tasks. For instance, research
by [23] emphasizes that combining spatial and linguistic contexts can significantly improve
QA accuracy in urban applications, especially when models are fine-tuned on geo-referenced
textual corpora.

The urban land use classification task also demonstrated notable results, with a mean
Intersection over Union (mloU) of 82.4%. These results are comparable or superior to recent
works utilizing vision transformers or self-supervised pretraining [24]. Notably, the residential
and vegetation classes showed the highest IoU and recall rates, reflecting the model's capability
to distinguish dominant urban features, even in high-density or heterogeneous environments.

The policy generation module received average expert ratings above 4.3 out of 5 across
diverse urban themes, affirming the system’s utility in real-world decision-making scenarios.
This outcome supports the view of [25], who argue that LLM-based systems can support
participatory urban planning by transforming complex spatial data into digestible
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recommendations. The high score in zoning and traffic management also reflects ongoing
research indicating that Al-driven policies are particularly impactful when aligned with
temporal urban dynamics [26].

The ablation study highlights the synergistic value of modality fusion. Removing
spatial or textual inputs led to noticeable declines in both mloU and QA accuracy, with the
full model outperforming all partial configurations. This confirms earlier findings by [27], who
showed that multi-modal co-attention mechanisms help LLLMs learn richer urban semantics.
Moreover, the moderate performance drop in the “Visual + Spatial” and “Text Only” setups
suggests that no single modality can entirely compensate for the absence of others.

Nevertheless, some limitations persist. The system's performance dropped slightly for
underrepresented classes such as industrial areas, likely due to class imbalance or limited
contextual cues in imagery. Similar biases have been reported in recent urban Al benchmarks
[28]. Furthermore, while BLEU and Exact Match are common metrics, they might not fully
capture the semantic relevance of QA outputs in spatial contexts [29].

Future work should focus on extending this framework to streaming spatiotemporal
data, such as real-time traffic feeds or urban IoT sensors. Integrating temporal LLMs like
Time-LLM [21] may enable more dynamic urban policy recommendations. Moreover, a more
diverse training corpus incorporating informal settlements, low-income regions, and culturally
nuanced urban texts can enhance generalizability and equity.

In sum, SpatialLLM represents a significant step forward in the application of LLMs to
geospatial analytics and urban policy. It addresses a core gap in current systems—namely, the
inability to synthesize heterogeneous urban data—and opens the door to more intelligent,
interpretable, and equitable urban planning tools.

Conclusion:

This study introduces SpatialLLLM, a cutting-edge multimodal framework designed to
bridge the gap between language models and urban spatial intelligence. Through extensive
experimentation on diverse tasks—Iland use classification, spatial QA, and urban policy
generation—we demonstrated that LLLMs can be effectively adapted to understand and reason
over spatial data when provided with aligned imagery, coordinates, and natural language
inputs.

The model's performance surpassed conventional benchmarks, delivering high
classification accuracy and semantically relevant responses in QA tasks. Its ability to generate
coherent, context-aware policy suggestions further confirms its potential as a tool for data-
driven urban governance. Our ablation analysis highlichted the value of modality fusion,
showing that spatial and visual data significantly enhance the reasoning capacity of LLMs when
fused with text.

By showcasing the strengths and adaptability of SpatialLLLM, this research contributes a

significant step forward in the development of Al systems that not only interpret but also

make sense of the urban environment in a human-aligned, explainable manner. Future work

should focus on integrating temporal data streams, extending coverage to underserved

geographies, and aligning outputs with urban equity and sustainability goals. Ultimately,

SpatialLLM opens new directions in the design of intelligent, multimodal systems that serve

cities and citizens alike.
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