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rban environments are becoming increasingly complex, demanding advanced tools 
capable of synthesizing spatial, visual, and textual information to support intelligent 
planning, classification, and decision-making. This study presents SpatialLLM, a novel 

geospatially grounded large language model framework that integrates multimodal data—
satellite imagery, spatial coordinates, and natural language texts—to address core urban 
computing tasks including land use classification, spatial question answering (QA), and policy 
recommendation generation. Using both public datasets and curated spatial corpora, we 
evaluated SpatialLLM on a suite of tasks. The model achieved a mean Intersection over Union 
(mIoU) of 82.4% for urban land use classification and outperformed baselines in QA with an 
exact match score of 83.2% and BLEU-4 of 0.81. Policy recommendations generated by the 
model received expert validation with an average rating of 4.31/5 across urban sustainability 
themes. An ablation study confirmed the critical role of cross-modal attention, where 
removing any modality significantly degraded performance. This research demonstrates that 
large language models, when spatially enriched and multimodally trained, can power next-
generation urban spatial intelligence systems. The implications extend to urban planning, 
disaster response, and participatory governance, marking a shift toward more interpretable, 
adaptable, and data-driven urban policy pipelines. 
Keywords: SpatialLLM, Multimodal Data, Urban Land Use Classification, Spatial Question 
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Introduction: 

Urban spatial intelligence refers to the capacity to extract actionable insights from 
complex spatial data to support urban planning, risk assessment, and environmental 
monitoring. Traditionally, this intelligence has relied heavily on expert knowledge and manual 
spatial reasoning, limiting the scalability and real-time utility of such systems [1][2]. With the 
explosion of urban data sources—ranging from remote sensing imagery and LiDAR point 
clouds to GPS-enabled devices and social media feeds—the demand for efficient, automated 
spatial intelligence systems has surged. In this context, the recent rise of Multimodal Large 
Language Models (MLLMs) and foundation models offers a transformative opportunity. 
These models, designed to process both visual and textual information, have shown promise 
in handling perception tasks like scene understanding and visual question answering [3][4][5]. 
While most efforts have focused on indoor environments, leveraging synthetic datasets and 
controlled object detection, there remains a need to scale such intelligence to complex outdoor 
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urban settings where scene semantics are more diverse, multimodal integration is critical, and 
annotation is prohibitively expensive [6][7]. 

SpatialLLM addresses these challenges by enabling zero-shot, real-time interpretation 
of urban 3D environments. It integrates a joint description module that fuses multi-modal 
spatial data (e.g., images, point clouds, vector maps) into coherent textual prompts. These 
prompts are then used to guide pre-trained LLMs for downstream urban tasks, including 
planning, ecological analysis, and infrastructure assessment. This paradigm not only 
overcomes the training bottleneck of multimodal models but also exploits the generalization 
and reasoning strengths of LLMs for urban-scale applications. 

Despite recent advances in spatial AI and GeoAI, current approaches have been 
largely limited to isolated applications within indoor environments or rely on handcrafted 
features and supervised learning in outdoor scenes. Indoor datasets like 3D-VisTA [8], Scene-
LLM [3], and Chat-3D [4] demonstrate the potential of LLMs when rich semantic labels and 
synthetic control are available. However, these models fail to generalize to outdoor urban 
contexts, which are inherently more complex due to semantic heterogeneity, high spatial 
variability, and lack of structured annotations [9][10]. Moreover, while GeoAI has successfully 
employed CNNs and transformers to extract spatial patterns, most models treat location as 
auxiliary metadata rather than core reasoning input, thereby neglecting spatial relationships, 
hierarchies, and the "first law of geography" [11][12]. Thus, there remains a critical research 
gap in developing spatially explicit, LLM-assisted systems that can interpret, reason, and act 
on complex outdoor multi-modal data without task-specific training, especially for city-scale 
applications like risk mapping, social sensing, and mobility analysis. 
Objectives: 

This study proposes SpatialLLM, an innovative framework aimed at advancing urban 
spatial intelligence by fusing raw multi-modality data with the zero-shot reasoning capabilities 
of large language models (LLMs). The central idea is to leverage LLMs not just for textual 
understanding, but also for interpreting, reasoning over, and generating insights from 
heterogeneous urban data sources such as satellite imagery, point clouds, and vector maps. A 
core objective of this research is the development of a multi-modal joint scene description 
module, designed to transform diverse spatial inputs into unified textual representations 
suitable for LLM processing. By enabling structured narration of urban environments, this 
module forms the foundation for cross-modal understanding within the LLM pipeline. 

Another critical aim of this study is to assess the zero-shot inference potential of LLMs 
in complex urban decision-making scenarios. The model is deployed to perform key spatial 
tasks—such as land use classification, traffic pattern analysis, and ecological risk assessment—
without requiring additional training or fine-tuning. This approach allows for scalable 
deployment in data-sparse urban regions and enables dynamic adaptation to new spatial 
contexts. 
Novelty Statement: 

This research contributes a paradigm shift in spatial artificial intelligence by 
introducing SpatialLLM, the first unified, zero-shot, multi-modality urban reasoning 
framework powered by pre-trained large language models. Unlike traditional GeoAI methods, 
which require extensive training and do not incorporate spatial priors into their computation, 
SpatialLLM operationalizes a spatially explicit reasoning pipeline. It constructs rich semantic 
prompts from real-world 3D and 2D urban data and exploits the emergent capabilities of 
LLMs in multi-domain knowledge integration and causal reasoning [7][13]. The method 
requires no fine-tuning or labeled datasets, making it highly scalable to new cities or urban 
conditions. Furthermore, the introduction of a benchmark QA dataset with spatial annotations 
fills a key gap in evaluating language models for urban applications—a domain that has thus 
far been underserved in large-scale foundation model research. In doing so, this study lays the 



                                                        Frontiers in Computational Spatial Intelligence 

April 2024|Vol 02 | Issue 02                                                                 Page |56 

groundwork for future foundation models in urban analytics, where both semantic richness 
and geographic specificity are prioritized [14][15][16]. 
Literature Review: 
Evolution of Urban Spatial Intelligence and GeoAI: 

Urban spatial intelligence—understood as the capacity to extract meaningful insights 
from geospatial data to support decision-making—has undergone a paradigm shift with the 
emergence of artificial intelligence (AI), particularly deep learning and large language models 
(LLMs). Traditional urban analysis methods have relied on statistical modeling and GIS, often 
requiring substantial domain knowledge and manual annotation [16][1]. The integration of AI 
has given rise to GeoAI, a domain where spatial concepts are explicitly embedded into AI 
models for improved geospatial reasoning [12][17]. 

Recent work has emphasized the necessity for spatially explicit models that account 
for geospatial relationships and heterogeneity. These models incorporate spatial dependency 
through convolutional or graph-based representations and outperform non-spatial deep 
learning methods in tasks like urban classification, population estimation, and infrastructure 
analysis [18][19]. However, most GeoAI approaches remain task-specific and fail to generalize 
across diverse urban contexts. 
Multimodal Large Language Models (MLLMs) in Spatial AI: 

The success of LLMs such as GPT-4 and LLaMA has inspired a new class of 
Multimodal Large Language Models (MLLMs) capable of handling both textual and visual 
inputs. MLLMs such as 3D-LLM [5], Scene-LLM [3], and Chat-3D [4] have demonstrated 
promising results in indoor spatial reasoning tasks like scene captioning, object grounding, and 
visual question answering (VQA). These models benefit from large synthetic datasets and 
controlled environments, using point clouds, RGB-D data, and egocentric video to generate 
paired data for training. 

The use of LLMs for spatial perception marks a significant advancement. For example, 
3D-VisTA [8] used GPT-3 to auto-generate over 270,000 3D scene descriptions, while 
LL3DA [20] facilitated object-centric queries in multi-room environments. Despite their 
success, these models remain constrained to indoor environments due to the availability of 
curated datasets and the lower complexity of scene semantics. 
Challenges in Outdoor Spatial Intelligence: 

Transferring these techniques to outdoor urban environments presents several 
challenges. First, outdoor scenes are semantically richer, with higher object variability, 
inconsistent data formats (maps, LiDAR, satellite imagery), and complex interactions (e.g., 
traffic systems, ecological zones) [7][9]. Second, labeled outdoor datasets are scarce due to 
high annotation costs and privacy concerns [6]. Third, unlike indoor perception tasks, outdoor 
urban tasks often involve high-level reasoning (e.g., zoning prediction, disaster response), 
demanding models that can link low-level features with socio-economic and environmental 
concepts. 

Recent studies, such as LLM4Geo [15] have proposed prompt-based reasoning for 
outdoor tasks without training, leveraging LLM priors. Similarly, SpatialGPT [13] explored 
spatial question answering using textual map prompts, but these approaches remain in early 
stages and are not yet optimized for 3D urban data fusion or task diversity. 
Bridging Modalities: From Raw Urban Data to Language Prompts 

A significant research advancement lies in multi-modality fusion, particularly for 
unifying diverse data types (e.g., vector maps, raster imagery, sensor readings) into a coherent 
textual representation that LLMs can interpret. This approach underpins models like 
SpatialLLM, which automates the transformation of raw urban data into scene-level textual 
descriptions that are then input into an LLM for downstream tasks. Studies by [14] and [13] 
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emphasize the importance of context length, reasoning depth, and multi-domain knowledge 
in LLM performance on urban tasks. 

Moreover, the design of evaluation benchmarks tailored for urban spatial intelligence 
is gaining traction. The UrbanQA dataset (proposed in 2024) includes geotagged, human-
annotated QA pairs grounded in real urban contexts, representing a crucial step toward 
standardized model evaluation [10]. 
Future Directions: Urban Foundation Models: 

Looking ahead, the concept of urban foundation models is gaining momentum. These 
models aim to generalize across cities and tasks, integrating spatial priors, policy rules, and 
environmental semantics into LLMs [2]. The key is achieving scalability, transferability, and 
interpretability, which require innovative methods for scene-to-text translation, cross-domain 
transfer, and explainable urban reasoning. 
Emerging works such as CityMind [21] and [22] propose hybrid architectures combining graph 
neural networks (GNNs) and LLMs for spatial knowledge graph inference. These frameworks 
suggest the next frontier: where urban management is mediated by machines capable of 
understanding geography in human terms. 
Results: 

The SpatialLLM framework demonstrated strong performance in extracting urban 
spatial intelligence by integrating multi-modal data streams—Sentinel-2 imagery, spatial graphs 
from OpenStreetMap, IoT-based sensor feeds, and text-based urban policy documents. As 
shown in Table 1 the system achieved an overall classification accuracy of 89.6% and a mean 
Intersection over Union (mIoU) of 82.4% across five key land use categories. Table 1 details 
the class-wise IoU performance, showing highest accuracy for residential and vegetated areas, 
while industrial zones remained more difficult to classify due to spectral and structural 
heterogeneity. 

Table 1. Urban Land Use Classification Performance of SpatialLLM 

Land Use Class IoU (%) 
Precision 

(%) 
Recall 

(%) 

Residential 86.1 89.4 88.3 

Commercial 80.2 84.7 81.1 

Industrial 75.4 78.6 76.2 

Vegetation 85.7 90.1 84.9 

Water Bodies 82.6 87.2 81.3 

Average (mIoU) 82.4 — — 

 
Figure 1. Urban Land Classification Performance 

For spatially grounded question answering, the model was benchmarked on a custom 
dataset of 300 geolocated urban planning queries. SpatialLLM achieved an exact match 
accuracy of 83.2% and a BLEU-4 score of 0.81, significantly outperforming GeoBERT and 
baseline LLMs. As shown in Table 2, accuracy improvements were particularly notable for 
region-specific queries requiring multimodal grounding. 
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Table 2. Performance on Spatio-Textual Question Answering 

Model 
Exact Match Accuracy 

(%) 
BLEU-4 

Score 

SpatialLLM 83.2 0.81 

GeoBERT 
(baseline) 

69.7 0.65 

BERT + OSM 
Text 

72.3 0.68 

In terms of policy generation, outputs from SpatialLLM were evaluated by a panel of 
five urban planning experts using a Likert scale (1–5). Table 3 presents average ratings across 
thematic areas. The system’s recommendations for zoning, infrastructure, and climate 
resilience were particularly well received, indicating its utility in real-world planning workflows. 

 
Figure 2. Performance on Spatio-Question Answering 

Table 3. Expert Ratings of Policy Generation Quality by Theme 

Policy Theme 
Expert Rating (1–

5) 

Zoning 
Recommendations 

4.5 

Infrastructure Planning 4.4 

Affordable Housing 4.2 

Green Infrastructure 4.1 

Traffic Mitigation 4.5 

Overall Mean 4.26 

Equity in spatial predictions was analyzed by computing a Prediction Consistency 
Score (PCS) between high- and low-income areas. Results showed near-equitable performance 
with PCS values of 0.92 for affluent zones and 0.88 for underdeveloped regions, confirming 
minimal spatial bias. Figure outputs (not shown here) also illustrate consistent model attention 
patterns across socio-economically diverse areas. 

 
Figure 3. Expert Ratings of Policy Recommendations 
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An ablation study was conducted to quantify the individual contribution of each 
modality (visual, spatial, and textual). Removing any single modality led to performance 
degradation, affirming the necessity of integrated multi-modality. Table 4 summarizes the 
impact on mIoU and QA accuracy. 

Table 4. Ablation Study on Modality Contributions 

Input Modality 
mIoU 
(%) 

QA Accuracy 
(%) 

Visual + Spatial + Text 
(Full) 

82.4 83.2 

Visual + Spatial 78.8 77.1 

Visual + Text 76.3 79.5 

Spatial + Text 77.2 80.4 

Visual Only 70.1 68.5 

Text Only 65.8 71.3 

Finally, the computational performance of SpatialLLM was found to be scalable. The 
model, with approximately 2.1 billion parameters, processed one multi-modal urban tile in 
0.9 seconds during inference on a dual A100 GPU server. Despite the large model size, fine-
tuning using LoRA made training efficient even with resource-constrained environments. 

 
Figure 4. Ablation Study: Impact of Each Modality 

Discussion: 
The results of this study confirm the significant promise of integrating multimodal 

data through large language models (LLMs) for advancing urban spatial intelligence. The 
SpatialLLM framework achieved superior performance across classification, spatial question 
answering (QA), and policy generation tasks, demonstrating the effectiveness of combining 
visual, textual, and spatial embeddings. 

Compared to existing models such as GeoBERT and BERT + OSM, SpatialLLM 
substantially outperformed in both Exact Match (83.2%) and BLEU-4 (0.81) scores. This 
aligns with the recent shift toward multimodal LLMs for spatial tasks. For instance, research 
by [23] emphasizes that combining spatial and linguistic contexts can significantly improve 
QA accuracy in urban applications, especially when models are fine-tuned on geo-referenced 
textual corpora. 

The urban land use classification task also demonstrated notable results, with a mean 
Intersection over Union (mIoU) of 82.4%. These results are comparable or superior to recent 
works utilizing vision transformers or self-supervised pretraining [24]. Notably, the residential 
and vegetation classes showed the highest IoU and recall rates, reflecting the model's capability 
to distinguish dominant urban features, even in high-density or heterogeneous environments. 

The policy generation module received average expert ratings above 4.3 out of 5 across 
diverse urban themes, affirming the system’s utility in real-world decision-making scenarios. 
This outcome supports the view of [25], who argue that LLM-based systems can support 
participatory urban planning by transforming complex spatial data into digestible 
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recommendations. The high score in zoning and traffic management also reflects ongoing 
research indicating that AI-driven policies are particularly impactful when aligned with 
temporal urban dynamics [26]. 

The ablation study highlights the synergistic value of modality fusion. Removing 
spatial or textual inputs led to noticeable declines in both mIoU and QA accuracy, with the 
full model outperforming all partial configurations. This confirms earlier findings by [27], who 
showed that multi-modal co-attention mechanisms help LLMs learn richer urban semantics. 
Moreover, the moderate performance drop in the “Visual + Spatial” and “Text Only” setups 
suggests that no single modality can entirely compensate for the absence of others. 

Nevertheless, some limitations persist. The system's performance dropped slightly for 
underrepresented classes such as industrial areas, likely due to class imbalance or limited 
contextual cues in imagery. Similar biases have been reported in recent urban AI benchmarks 
[28]. Furthermore, while BLEU and Exact Match are common metrics, they might not fully 
capture the semantic relevance of QA outputs in spatial contexts [29]. 

Future work should focus on extending this framework to streaming spatiotemporal 
data, such as real-time traffic feeds or urban IoT sensors. Integrating temporal LLMs like 
Time-LLM [21] may enable more dynamic urban policy recommendations. Moreover, a more 
diverse training corpus incorporating informal settlements, low-income regions, and culturally 
nuanced urban texts can enhance generalizability and equity. 
In sum, SpatialLLM represents a significant step forward in the application of LLMs to 
geospatial analytics and urban policy. It addresses a core gap in current systems—namely, the 
inability to synthesize heterogeneous urban data—and opens the door to more intelligent, 
interpretable, and equitable urban planning tools. 
Conclusion: 

This study introduces SpatialLLM, a cutting-edge multimodal framework designed to 
bridge the gap between language models and urban spatial intelligence. Through extensive 
experimentation on diverse tasks—land use classification, spatial QA, and urban policy 
generation—we demonstrated that LLMs can be effectively adapted to understand and reason 
over spatial data when provided with aligned imagery, coordinates, and natural language 
inputs. 

The model's performance surpassed conventional benchmarks, delivering high 
classification accuracy and semantically relevant responses in QA tasks. Its ability to generate 
coherent, context-aware policy suggestions further confirms its potential as a tool for data-
driven urban governance. Our ablation analysis highlighted the value of modality fusion, 
showing that spatial and visual data significantly enhance the reasoning capacity of LLMs when 
fused with text. 
By showcasing the strengths and adaptability of SpatialLLM, this research contributes a 
significant step forward in the development of AI systems that not only interpret but also 
make sense of the urban environment in a human-aligned, explainable manner. Future work 
should focus on integrating temporal data streams, extending coverage to underserved 
geographies, and aligning outputs with urban equity and sustainability goals. Ultimately, 
SpatialLLM opens new directions in the design of intelligent, multimodal systems that serve 
cities and citizens alike. 
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