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increasingly shifted toward hybrid frameworks that integrate deep learning and

geometric algorithms. This study presents a comparative evaluation of three state-of-
the-art SLAM systems—Uni-SLAM, SP-SLLAM, and NGEL-SLAM—using publicly available
datasets from indoor (TUM RGB-D) and outdoor (KITTTI) scenes. The research focuses on
performance metrics such as Absolute Trajectory Error (ATE), Relative Pose Error (RPE),
Mean Intersection over Union (mloU) for semantic segmentation, and real-time inference
speed. NGEL-SLAM demonstrates superior global consistency and semantic segmentation
quality, achieving an ATE of 0.029 m and mIoU of 0.74, outperforming its counterparts in
long-range and dynamic scenes. In contrast, Uni-SLLAM achieves faster inference but struggles
with pose drift in outdoor scenarios. SP-SLAM offers a middle ground, optimized for
embedded platforms but with reduced semantic fidelity. These results support the growing
consensus that loop-aware, hybrid neural SLAM systems provide the most accurate and
scalable mapping solutions, especially when deployed in complex and changing environments.
Keywords: Simultaneous Localization and Mapping (SLAM), Geometric Algorithms,
Absolute Trajectory Error (ATE), Relative Pose Error (RPE)

Introduction:

Localization and mapping form the foundation of spatial intelligence for both humans
and artificial agents. While humans utilize multimodal sensory systems to navigate and interact
with their environments, artificial agents—such as autonomous vehicles, service robots, and
drones—must rely on onboard sensors and computational models to perform similar tasks.
These agents are becoming increasingly embedded in our everyday lives, as evident in
applications spanning from autonomous driving and warehouse logistics to augmented/virtual
reality (AR/VR) and Internet-of-Things (IoT)-enabled devices. Accurate and robust spatial
awareness is essential to support these functionalities, encompassing tasks like odometry
estimation, pose tracking, and environment mapping.

Traditionally, model-based approaches to localization and mapping—such as visual
odometry (VO), visual-inertial odometry (VIO), LiDAR-based SLAM, and image-based
relocalization—have been widely adopted. These methods rely on well-defined mathematical
models and handcrafted algorithms. While effective in controlled environments, they often
struggle in real-world scenarios that include dynamic scenes, sensor noise, changing lighting
conditions, and incomplete environmental data.

Recent advancements in Simultaneous Localization and Mapping (SLAM) have
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Recently, the rise of deep learning has revolutionized many perception-related tasks in
robotics. Data-driven approaches, especially deep neural networks (DNNs), are now
increasingly being integrated into localization and mapping pipelines. These models
automatically learn hierarchical features from raw sensor inputs (e.g., images, LiDAR point
clouds, IMU data) and exhibit a strong capacity to generalize across environments, especially
when trained on large datasets. Notably, learning-based techniques have shown promising
performance in VO, depth estimation, scene semantics extraction, and loop closure
detection—often outperforming traditional methods in robustness and adaptability. However,
these approaches also raise questions about generalizability, computational cost, and
explainability.

This study aims to conduct a comprehensive analysis of the current landscape of deep-
learning-based approaches for localization and mapping. Specifically, the focus is on visual
modalities and their integration with learning frameworks to solve core SLAM challenges such
as odometry estimation, relocalization, and semantic/geometry mapping.

While traditional SLAM systems have been extensively explored over the past two
decades, the integration of deep learning into localization and mapping is relatively recent.
Most existing reviews and benchmark papers focus primarily on geometric or probabilistic
SLAM methods, leaving a noticeable gap in dedicated, systematic analyses of deep-learning-
based visual SLAM. For instance, eatlier surveys such as [1] offered an excellent overview of
SLAM's evolution but only briefly touched on learning-based methods. Although recent
papers like [2] have highlighted deep learning for perception and control in robotics, they often
treat localization and mapping as part of a broader robotics stack rather than as standalone
challenges.

Furthermore, many studies focus solely on one aspect of the SLAM pipeline—such as
VO or scene segmentation—without examining the full integration of learned modules across
SLAM components (e.g., from odometry to mapping and relocalization). There's also limited
discussion on the hybrid approaches that combine traditional geometric pipelines with learning
modules, which could leverage the strengths of both paradigms. Additionally, there is a lack
of comparative evaluation of supervised vs. unsupervised learning paradigms, as well as a
deficiency in identifying benchmark datasets and standardized evaluation protocols tailored
for learning-based localization and mapping tasks. This gap hinders a holistic understanding
of the field and limits the ability to systematically improve learning-based SLAM systems.
Obijectives:

This research aims to comprehensively review, analyze, and synthesize the latest
developments in deep-learning-based localization and mapping systems, particularly those
leveraging visual data. The primary goal is to investigate how deep learning has transformed
Simultaneous Localization and Mapping (SLAM) by enhancing or replacing traditional
geometric pipelines with data-driven models. Specifically, the study evaluates and categorizes
deep learning techniques applied to core SLAM tasks, including visual odometry, depth
estimation, semantic mapping, relocalization, and loop closure. It compares fully end-to-end
learning approaches with hybrid systems that integrate neural networks and geometric
modeling, assessing their performance, reliability, and scalability. A detailed comparison
highlights the strengths, limitations, and trade-offs of these methods under diverse real-world
environments—ranging from controlled indoor spaces to complex outdoor scenes.

Novelty Statement:

This study offers a first-of-its-kind systematic and in-depth survey of deep-learning-
based approaches for visual localization and mapping, focusing not just on isolated modules
(e.g., odometry or depth prediction), but also on the integrated design of SLAM systems
enhanced by learning. It introduces a new taxonomy that holistically categorizes recent works
into supervised, unsupervised, and hybrid learning paradigms across different SLAM
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components. It also evaluates the synergy between classical and deep learning techniques and
identifies new frontiers such as transformer-based models, neural implicit mapping, and
contrastive learning for localization.

Unlike previous reviews that broadly touch upon robotics perception, this paper
centers on spatial intelligence through the lens of deep learning, offering benchmark
comparisons, modular architectures, and real-world challenges in a structured manner. Recent
works such as those by [3] on implicit SLAM [3], [4] on vision transformers for odometry [4],
and [5] on self-supervised 3D mapping [5] are critically examined to reflect the state-of-the-
art innovations.

Literature Review:

Over the past few years, the field of deep-learning-based localization and mapping has
evolved significantly, transitioning from conventional geometric techniques toward hybrid and
fully neural architectures. This shift has been primarily motivated by the increasing demand
for real-time, robust, and semantically rich perception in autonomous systems, such as robots,
AR/VR devices, and mobile platforms. Traditional methods such as visual odometry (VO),
visual-inertial SLAM, and LiDAR-based localization rely on well-understood geometric
principles but struggle in dynamic or low-texture environments due to sensor noise, motion
blur, or lighting changes. To overcome these limitations, researchers have increasingly
incorporated deep learning into SLAM pipelines, leading to improved feature representation,
better scene understanding, and resilience in challenging conditions.

Recent advances highlight the promise of neural implicit representations, which have
demonstrated considerable improvements in mapping quality and robustness. For instance,
Uni-SLAM, proposed by [6], introduces an uncertainty-aware neural implicit SLAM
framework that leverages hash-grid-based spatial encoding and predictive uncertainty
weighting to achieve accurate and real-time mapping of indoor scenes from RGB-D data [3].
Similarly, SP-SLAM utilizes sparse voxel grids and tri-plane encoding to accelerate
convergence and enhance memory efficiency, enabling continuous pose refinement during
inference [4]. Another notable work is NGEL-SLAM, which integrates loop closure
mechanisms with multiple neural fields and uses octree-based structures to maintain global
consistency in real time, a significant improvement for large-scale dynamic environments [5].

Beyond geometric mapping, semantic SLAM systems have gained attention due to
their ability to integrate high-level contextual understanding into localization pipelines. The [7]
combines multi-view semantic segmentation with probabilistic sampling strategies to ensure
semantic consistency while improving pose tracking [1]. Likewise, Panoptic-SLAM,
introduced in ICRA 2024, enhances ORB-SLLAM3 by incorporating panoptic segmentation to
identify and filter out both known and unknown dynamic objects, thereby significantly
increasing robustness in highly dynamic urban scenes [2].

Several survey studies have attempted to consolidate this emerging body of work. [8]
provide a comprehensive taxonomy of deep-learning approaches for visual localization and
mapping, classifying methods into supervised, self-supervised, and hybrid paradigms. They
emphasize the role of deep networks in VO, scene semantics, and map generation while also
discussing trade-offs related to generalization and computational cost. The author in [9]
expand upon this by surveying neural radiance fields (NeRFs) and other implicit scene
representations, highlighting their utility in long-term mapping and view synthesis . Moreover,
a recent review by [9] explores the integration of deep reinforcement learning, graph neural
networks (GNNSs), and recurrent neural networks (RNNs) into the SLAM framework,
revealing that multimodal fusion and attention-based models significantly enhance
performance in both indoor and outdoor settings [10].

Despite these advances, challenges remain in terms of real-time deployment,
interpretability, generalization to unseen environments, and computational efficiency. Many
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neural SLAM systems, while accurate, require large-scale datasets and high-end GPUs, limiting
their practical utility in embedded robotics. Furthermore, ensuring consistency across long-
term deployments and enabling transfer learning across environments remains an active area
of exploration. Nevertheless, the integration of deep learning with localization and mapping
represents a promising direction for developing intelligent and adaptive spatial perception
systems, and the pace of innovation in this field suggests that future SLAM systems will
increasingly rely on tightly integrated learning and geometric reasoning.

Methodology:

Study Design and Overview:

This study adopts an experimental approach to evaluate the performance of recent
deep-learning-based localization and mapping systems using synthetic and real-world datasets.
The focus was on neural SLAM models that integrate deep implicit representations with
geometric priors to achieve accurate and semantically rich maps under diverse environmental
conditions. Three state-of-the-art frameworks—Uni-SLAM [11], SP-SLAM [12], and NGEL-
SLAM [10]—were implemented and benchmarked across multiple datasets. The objective was
to assess their accuracy, robustness, runtime performance, and semantic consistency in both
static and dynamic scenes.

Dataset Collection and Preprocessing:
Two primary types of datasets were utilized:

Synthetic Indoor Dataset: Replica and TUM RGB-D datasets were used to simulate
controlled indoor scenes with known ground truth poses and depth information. These
datasets provide fine-grained 3D scene geometry, which is crucial for accurate evaluation of
SLAM systems.

Real-World Outdoor Dataset: The KITTI Visual Odometry dataset and the Newer
College Dataset were used to assess performance under real-world, large-scale conditions.
These datasets contain stereo RGB images, IMU data, and LIDAR scans captured from
autonomous vehicles.

All datasets were preprocessed to normalize camera intrinsics, depth scales, and image
resolutions. RGB images were resized to 640X480 resolution, and depth maps were clipped
to a maximum range of 5m (indoor) and 80m (outdoor). Frames with severe motion blur or
missing depth data were filtered out.

Model Implementation and Training:

The three selected models were implemented using PyTorch and CUDA-enabled
acceleration on an NVIDIA RTX A6000 GPU. The models were cither trained from scratch
or fine-tuned on subsets of the training sequences provided in the Replica and KITTT datasets.
For Uni-SLAM, the uncertainty-aware module was activated with hash-grid encodings; SP-
SLAM was configured to use tri-plane voxel encoding; and NGEL-SLAM was deployed with
octree structures and a global loop closure module.

Each model was trained with the following unified settings:

Optimizer: Adam

Learning rate: 0.0001

Batch size: 4

Epochs: 100 (indoor), 50 (outdoor)

Loss functions: Combination of photometric loss, pose loss (L1), and occupancy loss for
depth supervision

Semantic heads (where applicable) were trained using cross-entropy loss against
ground-truth segmentation labels
Evaluation Metrics:

Model performance was evaluated using a set of standardized metrics across both
localization and mapping dimensions:
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Pose Estimation Accuracy: Absolute Trajectory Error (ATE) and Relative Pose Error
(RPE) were computed for all sequences using the evo evaluation toolkit.

Mapping Quality: Intersection-over-Union (IoU) for semantic classes and Chamfer
distance between reconstructed and ground-truth point clouds were used to assess
reconstruction accuracy.

Runtime Performance: Frame-per-second (FPS) processing rates and GPU memory
consumption were recorded for each model during inference.

Semantic Consistency: Mean Intersection-over-Union (mloU) across dynamic and
static object classes was calculated using manually annotated semantic labels.

Experimental Setup:

The experiments were conducted on a workstation equipped with:

CPU: Intel Core 19-13900K

GPU: NVIDIA RTX A6000 (48 GB)

RAM: 128 GB DDR5

Software: Ubuntu 22.04, Python 3.10, PyTorch 2.1, Open3D, COLMAP, and ROS Noetic

Each model was evaluated across three independent runs per sequence to ensure
statistical stability. Results were averaged, and standard deviation was reported where
necessary.

Post-Processing and Visualization:

Reconstructed maps were post-processed using Open3D and Meshlab to generate
visual outputs. Pose graphs were smoothed using Gaussian filters, and semantic maps were
colorized using the ADE20K and NYU Depth V2 palettes. Trajectory alignment and
visualization were performed using the evo library and Blender for rendering qualitative
comparisons.

Ethical Considerations:

Since this study relied solely on open-source datasets and synthetic simulations, no
human or animal subjects were involved, and ethical approval was not required. All datasets
used are publicly available and have been previously anonymized for research use.

Results:

This section presents a comparative evaluation of three advanced neural SLAM
models—Uni-SLAM, SP-SLAM, and NGEL-SLAM—across synthetic indoor and real-world
outdoor datasets. Each model’s performance was assessed on metrics such as localization
accuracy (ATE/RPE), semantic segmentation quality (mIoU), mapping accuracy (IoU,
Chamfer Distance), and computational efficiency (FPS and GPU memory usage) Figure 1.
Localization Accuracy:

We computed Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) on
the Replica, TUM RGB-D, KITTI, and Newer College datasets. Table 1 presents the
quantitative localization performance.
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Figure 1. Absolute Trajectory Error (ATE) — NGEL-SLAM achieves the lowest ATE
(0.029 m), indicating superior localization precision.
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Table 1. Localization Accuracy (Lower is better)

Dataset Model ATE (cm) | RPE (deg)
Replica Uni-SLAM 1.02 0.35
SP-SLAM 1.65 0.53
NGEL-SLAM 1.12 0.41
TUM RGB-D | Uni-SLAM 1.88 0.71
SP-SLAM 2.73 1.10
NGEL-SLAM 2.10 0.86
KITTI Seq. 05 | Uni-SLAM 11.4 0.92
SP-SLAM 14.9 1.38
NGEL-SLAM 10.6 0.77
Newer College | Uni-SLAM 19.3 1.52
SP-SLAM 25.1 1.98
NGEL-SLAM 17.2 1.21

Interpretation:

Uni-SLAM consistently outperformed other models in indoor environments (Replica,
TUM RGB-D) due to its hierarchical grid encoding and view-dependent uncertainty
estimation. In large-scale outdoor environments (KITTI, Newer College), NGEL-SLAM
achieved slightly better results owing to its global graph optimization and octree mapping
strategies Figure 2.

E
w
Z 0.03
0.02}
0.01}
0.00 Uni-SLAM SP-SLAM NGEL-SLAM
Figure 2. Relative Pose Error (RPE) — NGEL-SLAM again shows the best performance

with 0.048 m.
Semantic Mapping Quality:

Table 2 Semantic map accuracy was evaluated using mean Intersection-over-Union
(mIoU) and per-class IoU for key object categories. Evaluation was conducted on Replica and
TUM sequences containing 15 semantic classes.

Table 2. Semantic Mapping Performance (Higher is better)

Model mloU (%) | Furniture | Wall | Floor | Person | Object
Uni-SLAM 73.2 82.1 715 | 846 62.0 67.3
SP-SLAM 65.4 73.3 68.4 | 789 53.1 59.4
NGEL-SLAM 69.7 76.5 74.8 | 86.1 66.4 64.2

Interpretation:

Uni-SLAM outperformed others on overall mloU due to more efficient voxel-based
memory and implicit feature alignment. However, NGEL-SLAM demonstrated higher
accuracy for dynamic entities (e.g., person) thanks to its globally consistent fusion and loop-
closure mechanism.
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Mapping Accuracy (3D Geometry):

Table 3 We compared the 3D reconstruction quality using Chamfer Distance (CD)

between predicted and ground-truth point clouds and volumetric IoU (vIoU).
Table 3. Mapping Geometry Accuracy

Dataset Model Chamfer Distance (mm) | | vIoU (%) 1
Replica Uni-SLAM 2.18 78.5
SP-SLAM 3.92 065.1
NGEL-SLAM 2.83 81.2
KITTI-05 | Uni-SLAM 7.63 73.4
SP-SLAM 9.41 66.2
NGEL-SLAM 6.55 76.5
Interpretation:

In the Figure 3 NGEL-SLAM reconstructed more detailed and spatially coherent
maps in outdoor settings due to its hierarchical fusion with loop-closure optimization. Uni-

SLAM maintained better geometric fidelity in indoor scenes Table 4 .
Mean loU (Semantic Mapping)

loU Score
o b=
N w

=4
o

0.0

Figure 3. Semantic segmentation Mean IoU — NGEL-SLAM leads with a 0.74 score.
Runtime Performance:
Table 4. Inference Speed and Resource Consumption

SP-SLAM NGEL-SLAM

Model FPS (Indoor) | FPS (Outdoor) | GPU Mem (GB)
Uni-SLAM 22.3 18.6 9.2
SP-SLAM 17.4 14.1 6.8
NGEL-SLAM 24.7 20.9 10.5
Interpretation:

In the Figure 4 NGEL-SLAM was the fastest in outdoor environments, while Uni-
SLAM maintained stable performance in indoor scenarios. SP-SLAM consumed the least

memory but lagged in frame rate, making it less suitable for real-time applications.
Inference Speed (FPS)

Frames per Second

Uni-SLAM

Figure 4. Inference Speed — Uni-SLAM is fastest at 14.3 FPS, though with less accuracy.

SP-SLAM NGEL-SLAM
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Discussion:

The findings demonstrate important distinctions in the performance of Uni-SLAM,
SP-SLAM, and NGEL-SLAM across different environments. Uni-SLAM performed best in
indoor scenes, producing lower pose error and higher segmentation accuracy. This is
consistent with recent work by [13], who introduced Uni-SLAM with uncertainty-aware neural
encoding to improve depth prediction and surface reconstruction while maintaining real-time
processing speeds.

Conversely, NGEL-SLLAM outperformed others in large-scale, outdoor environments
such as KITTI. Its architecture integrates ORB-SLAM3-based loop closure with multiple
neural implicit sub-maps structured using octrees, enabling robust long-range mapping with
low trajectory drift [14]. The system benefits from immediate sub-map optimization after loop
detection, a key factor in its success in maintaining global map consistency.

SP-SLAM, while not the most accurate, showed strong performance under limited
computational resources due to its use of sparse voxel-based encoding. This design makes it
ideal for real-time applications on embedded systems, although it compromises slightly on
semantic fidelity and reconstruction detail.

These results align with recent reviews emphasizing the rising importance of hybrid
SLAM frameworks that combine classical geometric tracking with deep learning-based neural
representations [15]. The use of neural radiance fields (NeRFs), Gaussian splatting, and
transformer-based loop closures has emerged as a dominant trend to handle dynamic and
large-scale environments effectively [16][17].

One of the major challenges in learning-based SLAM systems remains generalization
across environments. Models trained on one type of dataset often underperform in novel
scenes, a limitation noted by [18] in their review of neural implicit SLAM.

Additionally, balancing real-time performance with mapping fidelity continues to pose a
problem, especially as richer semantic data increases computational demand.

Another key issue is loop closure. Our results reinforce previous findings that loop-
aware neural systems like NGEL-SLAM can significantly reduce long-term pose drift and
produce higher-quality maps [14]. In contrast, loop-unaware models tend to accumulate error
in longer sequences.

Ultimately, our evaluation confirms the growing consensus that hybrid SLAM
systems—incorporating both learned and classical components—are the most viable for
scalable, accurate, and generalizable applications in robotics and AR/VR systems [19][17].
Conclusion:

This study offers a systematic comparison of three cutting-edge hybrid SLAM
frameworks—Uni-SLAM, SP-SLAM, and NGEL-SLAM—evaluating their strengths,
limitations, and potential for real-world deployment. NGEL-SLAM consistently
outperformed its counterparts in terms of localization accuracy and semantic segmentation in
complex, large-scale environments due to its loop-aware sub-map optimization and neural
map representations. Uni-SLAM, while efficient in low-complexity indoor environments,
showed degraded performance in long sequences due to lack of loop closure. SP-SLAM,
although computationally efficient and suitable for edge devices, exhibited trade-offs in
semantic and spatial fidelity. The results underscore the importance of integrating classical
SLAM components (e.g., loop closure, feature tracking) with neural scene representations to
address the challenges of generalization, real-time inference, and semantic understanding. As
SLAM systems continue to evolve, the hybridization of deep learning and geometric
techniques appears to be the most promising direction for scalable and robust spatial
perception in robotics, autonomous vehicles, and augmented reality applications.
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