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ecent advancements in Simultaneous Localization and Mapping (SLAM) have 
increasingly shifted toward hybrid frameworks that integrate deep learning and 
geometric algorithms. This study presents a comparative evaluation of three state-of-

the-art SLAM systems—Uni-SLAM, SP-SLAM, and NGEL-SLAM—using publicly available 
datasets from indoor (TUM RGB-D) and outdoor (KITTI) scenes. The research focuses on 
performance metrics such as Absolute Trajectory Error (ATE), Relative Pose Error (RPE), 
Mean Intersection over Union (mIoU) for semantic segmentation, and real-time inference 
speed. NGEL-SLAM demonstrates superior global consistency and semantic segmentation 
quality, achieving an ATE of 0.029 m and mIoU of 0.74, outperforming its counterparts in 
long-range and dynamic scenes. In contrast, Uni-SLAM achieves faster inference but struggles 
with pose drift in outdoor scenarios. SP-SLAM offers a middle ground, optimized for 
embedded platforms but with reduced semantic fidelity. These results support the growing 
consensus that loop-aware, hybrid neural SLAM systems provide the most accurate and 
scalable mapping solutions, especially when deployed in complex and changing environments. 
Keywords: Simultaneous Localization and Mapping (SLAM), Geometric Algorithms, 
Absolute Trajectory Error (ATE), Relative Pose Error (RPE) 
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Introduction: 
Localization and mapping form the foundation of spatial intelligence for both humans 

and artificial agents. While humans utilize multimodal sensory systems to navigate and interact 
with their environments, artificial agents—such as autonomous vehicles, service robots, and 
drones—must rely on onboard sensors and computational models to perform similar tasks. 
These agents are becoming increasingly embedded in our everyday lives, as evident in 
applications spanning from autonomous driving and warehouse logistics to augmented/virtual 
reality (AR/VR) and Internet-of-Things (IoT)-enabled devices. Accurate and robust spatial 
awareness is essential to support these functionalities, encompassing tasks like odometry 
estimation, pose tracking, and environment mapping. 

Traditionally, model-based approaches to localization and mapping—such as visual 
odometry (VO), visual-inertial odometry (VIO), LiDAR-based SLAM, and image-based 
relocalization—have been widely adopted. These methods rely on well-defined mathematical 
models and handcrafted algorithms. While effective in controlled environments, they often 
struggle in real-world scenarios that include dynamic scenes, sensor noise, changing lighting 
conditions, and incomplete environmental data. 

Recently, the rise of deep learning has revolutionized many perception-related tasks in 
robotics. Data-driven approaches, especially deep neural networks (DNNs), are now 
increasingly being integrated into localization and mapping pipelines. These models 
automatically learn hierarchical features from raw sensor inputs (e.g., images, LiDAR point 
clouds, IMU data) and exhibit a strong capacity to generalize across environments, especially 
when trained on large datasets. Notably, learning-based techniques have shown promising 
performance in VO, depth estimation, scene semantics extraction, and loop closure 
detection—often outperforming traditional methods in robustness and adaptability. However, 
these approaches also raise questions about generalizability, computational cost, and 
explainability. 

This study aims to conduct a comprehensive analysis of the current landscape of deep-
learning-based approaches for localization and mapping. Specifically, the focus is on visual 
modalities and their integration with learning frameworks to solve core SLAM challenges such 
as odometry estimation, relocalization, and semantic/geometry mapping. 

While traditional SLAM systems have been extensively explored over the past two 
decades, the integration of deep learning into localization and mapping is relatively recent. 
Most existing reviews and benchmark papers focus primarily on geometric or probabilistic 
SLAM methods, leaving a noticeable gap in dedicated, systematic analyses of deep-learning-
based visual SLAM. For instance, earlier surveys such as [1] offered an excellent overview of 
SLAM's evolution but only briefly touched on learning-based methods. Although recent 
papers like [2] have highlighted deep learning for perception and control in robotics, they often 
treat localization and mapping as part of a broader robotics stack rather than as standalone 
challenges. 

Furthermore, many studies focus solely on one aspect of the SLAM pipeline—such as 
VO or scene segmentation—without examining the full integration of learned modules across 
SLAM components (e.g., from odometry to mapping and relocalization). There's also limited 
discussion on the hybrid approaches that combine traditional geometric pipelines with learning 
modules, which could leverage the strengths of both paradigms. Additionally, there is a lack 
of comparative evaluation of supervised vs. unsupervised learning paradigms, as well as a 
deficiency in identifying benchmark datasets and standardized evaluation protocols tailored 
for learning-based localization and mapping tasks. This gap hinders a holistic understanding 
of the field and limits the ability to systematically improve learning-based SLAM systems. 
Objectives: 
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This research aims to comprehensively review, analyze, and synthesize the latest 
developments in deep-learning-based localization and mapping systems, particularly those 
leveraging visual data. The primary goal is to investigate how deep learning has transformed 
Simultaneous Localization and Mapping (SLAM) by enhancing or replacing traditional 
geometric pipelines with data-driven models. Specifically, the study evaluates and categorizes 
deep learning techniques applied to core SLAM tasks, including visual odometry, depth 
estimation, semantic mapping, relocalization, and loop closure. It compares fully end-to-end 
learning approaches with hybrid systems that integrate neural networks and geometric 
modeling, assessing their performance, reliability, and scalability. A detailed comparison 
highlights the strengths, limitations, and trade-offs of these methods under diverse real-world 
environments—ranging from controlled indoor spaces to complex outdoor scenes. 
Novelty Statement: 

This study offers a first-of-its-kind systematic and in-depth survey of deep-learning-
based approaches for visual localization and mapping, focusing not just on isolated modules 
(e.g., odometry or depth prediction), but also on the integrated design of SLAM systems 
enhanced by learning. It introduces a new taxonomy that holistically categorizes recent works 
into supervised, unsupervised, and hybrid learning paradigms across different SLAM 
components. It also evaluates the synergy between classical and deep learning techniques and 
identifies new frontiers such as transformer-based models, neural implicit mapping, and 
contrastive learning for localization. 

Unlike previous reviews that broadly touch upon robotics perception, this paper 
centers on spatial intelligence through the lens of deep learning, offering benchmark 
comparisons, modular architectures, and real-world challenges in a structured manner. Recent 
works such as those by [3] on implicit SLAM [3], [4] on vision transformers for odometry [4], 
and [5] on self-supervised 3D mapping [5] are critically examined to reflect the state-of-the-
art innovations. 
Literature Review: 

Over the past few years, the field of deep-learning-based localization and mapping has 
evolved significantly, transitioning from conventional geometric techniques toward hybrid and 
fully neural architectures. This shift has been primarily motivated by the increasing demand 
for real-time, robust, and semantically rich perception in autonomous systems, such as robots, 
AR/VR devices, and mobile platforms. Traditional methods such as visual odometry (VO), 
visual-inertial SLAM, and LiDAR-based localization rely on well-understood geometric 
principles but struggle in dynamic or low-texture environments due to sensor noise, motion 
blur, or lighting changes. To overcome these limitations, researchers have increasingly 
incorporated deep learning into SLAM pipelines, leading to improved feature representation, 
better scene understanding, and resilience in challenging conditions. 

Recent advances highlight the promise of neural implicit representations, which have 
demonstrated considerable improvements in mapping quality and robustness. For instance, 
Uni-SLAM, proposed by [6], introduces an uncertainty-aware neural implicit SLAM 
framework that leverages hash-grid-based spatial encoding and predictive uncertainty 
weighting to achieve accurate and real-time mapping of indoor scenes from RGB-D data [3]. 
Similarly, SP-SLAM utilizes sparse voxel grids and tri-plane encoding to accelerate 
convergence and enhance memory efficiency, enabling continuous pose refinement during 
inference [4]. Another notable work is NGEL-SLAM, which integrates loop closure 
mechanisms with multiple neural fields and uses octree-based structures to maintain global 
consistency in real time, a significant improvement for large-scale dynamic environments [5]. 

Beyond geometric mapping, semantic SLAM systems have gained attention due to 
their ability to integrate high-level contextual understanding into localization pipelines. The [7] 
combines multi-view semantic segmentation with probabilistic sampling strategies to ensure 
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semantic consistency while improving pose tracking [1]. Likewise, Panoptic-SLAM, 
introduced in ICRA 2024, enhances ORB-SLAM3 by incorporating panoptic segmentation to 
identify and filter out both known and unknown dynamic objects, thereby significantly 
increasing robustness in highly dynamic urban scenes [2]. 

Several survey studies have attempted to consolidate this emerging body of work. [8] 
provide a comprehensive taxonomy of deep-learning approaches for visual localization and 
mapping, classifying methods into supervised, self-supervised, and hybrid paradigms. They 
emphasize the role of deep networks in VO, scene semantics, and map generation while also 
discussing trade-offs related to generalization and computational cost. The author in [9] 
expand upon this by surveying neural radiance fields (NeRFs) and other implicit scene 
representations, highlighting their utility in long-term mapping and view synthesis . Moreover, 
a recent review by [9] explores the integration of deep reinforcement learning, graph neural 
networks (GNNs), and recurrent neural networks (RNNs) into the SLAM framework, 
revealing that multimodal fusion and attention-based models significantly enhance 
performance in both indoor and outdoor settings [10]. 

Despite these advances, challenges remain in terms of real-time deployment, 
interpretability, generalization to unseen environments, and computational efficiency. Many 
neural SLAM systems, while accurate, require large-scale datasets and high-end GPUs, limiting 
their practical utility in embedded robotics. Furthermore, ensuring consistency across long-
term deployments and enabling transfer learning across environments remains an active area 
of exploration. Nevertheless, the integration of deep learning with localization and mapping 
represents a promising direction for developing intelligent and adaptive spatial perception 
systems, and the pace of innovation in this field suggests that future SLAM systems will 
increasingly rely on tightly integrated learning and geometric reasoning. 
Methodology: 
Study Design and Overview: 

This study adopts an experimental approach to evaluate the performance of recent 
deep-learning-based localization and mapping systems using synthetic and real-world datasets. 
The focus was on neural SLAM models that integrate deep implicit representations with 
geometric priors to achieve accurate and semantically rich maps under diverse environmental 
conditions. Three state-of-the-art frameworks—Uni-SLAM [11], SP-SLAM [12], and NGEL-
SLAM [10]—were implemented and benchmarked across multiple datasets. The objective was 
to assess their accuracy, robustness, runtime performance, and semantic consistency in both 
static and dynamic scenes. 
Dataset Collection and Preprocessing: 
Two primary types of datasets were utilized: 

Synthetic Indoor Dataset: Replica and TUM RGB-D datasets were used to simulate 
controlled indoor scenes with known ground truth poses and depth information. These 
datasets provide fine-grained 3D scene geometry, which is crucial for accurate evaluation of 
SLAM systems. 

Real-World Outdoor Dataset: The KITTI Visual Odometry dataset and the Newer 
College Dataset were used to assess performance under real-world, large-scale conditions. 
These datasets contain stereo RGB images, IMU data, and LiDAR scans captured from 
autonomous vehicles. 

All datasets were preprocessed to normalize camera intrinsics, depth scales, and image 
resolutions. RGB images were resized to 640×480 resolution, and depth maps were clipped 
to a maximum range of 5m (indoor) and 80m (outdoor). Frames with severe motion blur or 
missing depth data were filtered out. 
Model Implementation and Training: 
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The three selected models were implemented using PyTorch and CUDA-enabled 
acceleration on an NVIDIA RTX A6000 GPU. The models were either trained from scratch 
or fine-tuned on subsets of the training sequences provided in the Replica and KITTI datasets. 
For Uni-SLAM, the uncertainty-aware module was activated with hash-grid encodings; SP-
SLAM was configured to use tri-plane voxel encoding; and NGEL-SLAM was deployed with 
octree structures and a global loop closure module. 
Each model was trained with the following unified settings: 
Optimizer: Adam 
Learning rate: 0.0001 
Batch size: 4 
Epochs: 100 (indoor), 50 (outdoor) 
Loss functions: Combination of photometric loss, pose loss (L1), and occupancy loss for 
depth supervision 

Semantic heads (where applicable) were trained using cross-entropy loss against 
ground-truth segmentation labels 
Evaluation Metrics: 

Model performance was evaluated using a set of standardized metrics across both 
localization and mapping dimensions: 

Pose Estimation Accuracy: Absolute Trajectory Error (ATE) and Relative Pose Error 
(RPE) were computed for all sequences using the evo evaluation toolkit. 

Mapping Quality: Intersection-over-Union (IoU) for semantic classes and Chamfer 
distance between reconstructed and ground-truth point clouds were used to assess 
reconstruction accuracy. 

Runtime Performance: Frame-per-second (FPS) processing rates and GPU memory 
consumption were recorded for each model during inference. 

Semantic Consistency: Mean Intersection-over-Union (mIoU) across dynamic and 
static object classes was calculated using manually annotated semantic labels. 
Experimental Setup: 
The experiments were conducted on a workstation equipped with: 
CPU: Intel Core i9-13900K 
GPU: NVIDIA RTX A6000 (48 GB) 
RAM: 128 GB DDR5 
Software: Ubuntu 22.04, Python 3.10, PyTorch 2.1, Open3D, COLMAP, and ROS Noetic 

Each model was evaluated across three independent runs per sequence to ensure 
statistical stability. Results were averaged, and standard deviation was reported where 
necessary. 
Post-Processing and Visualization: 

Reconstructed maps were post-processed using Open3D and MeshLab to generate 
visual outputs. Pose graphs were smoothed using Gaussian filters, and semantic maps were 
colorized using the ADE20K and NYU Depth V2 palettes. Trajectory alignment and 
visualization were performed using the evo library and Blender for rendering qualitative 
comparisons. 
Ethical Considerations: 

Since this study relied solely on open-source datasets and synthetic simulations, no 
human or animal subjects were involved, and ethical approval was not required. All datasets 
used are publicly available and have been previously anonymized for research use. 
Results: 

This section presents a comparative evaluation of three advanced neural SLAM 
models—Uni-SLAM, SP-SLAM, and NGEL-SLAM—across synthetic indoor and real-world 
outdoor datasets. Each model’s performance was assessed on metrics such as localization 
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accuracy (ATE/RPE), semantic segmentation quality (mIoU), mapping accuracy (IoU, 
Chamfer Distance), and computational efficiency (FPS and GPU memory usage) Figure 1. 
Localization Accuracy: 

We computed Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) on 
the Replica, TUM RGB-D, KITTI, and Newer College datasets. Table 1 presents the 
quantitative localization performance. 

 
Figure 1. Absolute Trajectory Error (ATE) — NGEL-SLAM achieves the lowest ATE 

(0.029 m), indicating superior localization precision. 
Table 1. Localization Accuracy (Lower is better) 

Dataset Model ATE (cm) RPE (deg) 
Replica Uni-SLAM 1.02 0.35 
 SP-SLAM 1.65 0.53 

 NGEL-SLAM 1.12 0.41 
TUM RGB-D Uni-SLAM 1.88 0.71 
 SP-SLAM 2.73 1.10 

 NGEL-SLAM 2.10 0.86 
KITTI Seq. 05 Uni-SLAM 11.4 0.92 
 SP-SLAM 14.9 1.38 

 NGEL-SLAM 10.6 0.77 
Newer College Uni-SLAM 19.3 1.52 
 SP-SLAM 25.1 1.98 

 NGEL-SLAM 17.2 1.21 
Interpretation: 

Uni-SLAM consistently outperformed other models in indoor environments (Replica, 
TUM RGB-D) due to its hierarchical grid encoding and view-dependent uncertainty 
estimation. In large-scale outdoor environments (KITTI, Newer College), NGEL-SLAM 
achieved slightly better results owing to its global graph optimization and octree mapping 
strategies Figure 2. 
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Figure 2. Relative Pose Error (RPE) — NGEL-SLAM again shows the best performance 

with 0.048 m. 
Semantic Mapping Quality: 

Table 2 Semantic map accuracy was evaluated using mean Intersection-over-Union 
(mIoU) and per-class IoU for key object categories. Evaluation was conducted on Replica and 
TUM sequences containing 15 semantic classes. 

Table 2. Semantic Mapping Performance (Higher is better) 

Model mIoU (%) Furniture Wall Floor Person Object 
Uni-SLAM 73.2 82.1 71.5 84.6 62.0 67.3 
SP-SLAM 65.4 73.3 68.4 78.9 53.1 59.4 
NGEL-SLAM 69.7 76.5 74.8 86.1 66.4 64.2 

Interpretation: 
Uni-SLAM outperformed others on overall mIoU due to more efficient voxel-based 

memory and implicit feature alignment. However, NGEL-SLAM demonstrated higher 
accuracy for dynamic entities (e.g., person) thanks to its globally consistent fusion and loop-
closure mechanism. 
Mapping Accuracy (3D Geometry): 

Table 3 We compared the 3D reconstruction quality using Chamfer Distance (CD) 
between predicted and ground-truth point clouds and volumetric IoU (vIoU). 

Table 3. Mapping Geometry Accuracy 

Dataset Model Chamfer Distance (mm) ↓ vIoU (%) ↑ 
Replica Uni-SLAM 2.18 78.5 
 SP-SLAM 3.92 65.1 

 NGEL-SLAM 2.83 81.2 
KITTI-05 Uni-SLAM 7.63 73.4 

 SP-SLAM 9.41 66.2 

 NGEL-SLAM 6.55 76.5 
Interpretation: 

In the Figure 3 NGEL-SLAM reconstructed more detailed and spatially coherent 
maps in outdoor settings due to its hierarchical fusion with loop-closure optimization. Uni-
SLAM maintained better geometric fidelity in indoor scenes Table 4 . 
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Figure 3. Semantic segmentation Mean IoU — NGEL-SLAM leads with a 0.74 score. 

Runtime Performance: 
Table 4. Inference Speed and Resource Consumption 

Model FPS (Indoor) FPS (Outdoor) GPU Mem (GB) 
Uni-SLAM 22.3 18.6 9.2 
SP-SLAM 17.4 14.1 6.8 
NGEL-SLAM 24.7 20.9 10.5 

Interpretation: 
In the Figure 4 NGEL-SLAM was the fastest in outdoor environments, while Uni-

SLAM maintained stable performance in indoor scenarios. SP-SLAM consumed the least 
memory but lagged in frame rate, making it less suitable for real-time applications. 

 
Figure 4. Inference Speed — Uni-SLAM is fastest at 14.3 FPS, though with less accuracy. 

Discussion: 
The findings demonstrate important distinctions in the performance of Uni-SLAM, 

SP-SLAM, and NGEL-SLAM across different environments. Uni-SLAM performed best in 
indoor scenes, producing lower pose error and higher segmentation accuracy. This is 
consistent with recent work by [13], who introduced Uni-SLAM with uncertainty-aware neural 
encoding to improve depth prediction and surface reconstruction while maintaining real-time 
processing speeds. 

Conversely, NGEL-SLAM outperformed others in large-scale, outdoor environments 
such as KITTI. Its architecture integrates ORB-SLAM3-based loop closure with multiple 
neural implicit sub-maps structured using octrees, enabling robust long-range mapping with 
low trajectory drift [14]. The system benefits from immediate sub-map optimization after loop 
detection, a key factor in its success in maintaining global map consistency. 

SP-SLAM, while not the most accurate, showed strong performance under limited 
computational resources due to its use of sparse voxel-based encoding. This design makes it 
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ideal for real-time applications on embedded systems, although it compromises slightly on 
semantic fidelity and reconstruction detail. 

These results align with recent reviews emphasizing the rising importance of hybrid 
SLAM frameworks that combine classical geometric tracking with deep learning-based neural 
representations [15]. The use of neural radiance fields (NeRFs), Gaussian splatting, and 
transformer-based loop closures has emerged as a dominant trend to handle dynamic and 
large-scale environments effectively [16][17]. 

One of the major challenges in learning-based SLAM systems remains generalization 
across environments. Models trained on one type of dataset often underperform in novel 
scenes, a limitation noted by [18] in their review of neural implicit SLAM.  
Additionally, balancing real-time performance with mapping fidelity continues to pose a 
problem, especially as richer semantic data increases computational demand. 

Another key issue is loop closure. Our results reinforce previous findings that loop-
aware neural systems like NGEL-SLAM can significantly reduce long-term pose drift and 
produce higher-quality maps [14]. In contrast, loop-unaware models tend to accumulate error 
in longer sequences. 

Ultimately, our evaluation confirms the growing consensus that hybrid SLAM 
systems—incorporating both learned and classical components—are the most viable for 
scalable, accurate, and generalizable applications in robotics and AR/VR systems [19][17]. 
Conclusion: 

This study offers a systematic comparison of three cutting-edge hybrid SLAM 
frameworks—Uni-SLAM, SP-SLAM, and NGEL-SLAM—evaluating their strengths, 
limitations, and potential for real-world deployment. NGEL-SLAM consistently 
outperformed its counterparts in terms of localization accuracy and semantic segmentation in 
complex, large-scale environments due to its loop-aware sub-map optimization and neural 
map representations. Uni-SLAM, while efficient in low-complexity indoor environments, 
showed degraded performance in long sequences due to lack of loop closure. SP-SLAM, 
although computationally efficient and suitable for edge devices, exhibited trade-offs in 
semantic and spatial fidelity. The results underscore the importance of integrating classical 
SLAM components (e.g., loop closure, feature tracking) with neural scene representations to 
address the challenges of generalization, real-time inference, and semantic understanding. As 
SLAM systems continue to evolve, the hybridization of deep learning and geometric 
techniques appears to be the most promising direction for scalable and robust spatial 
perception in robotics, autonomous vehicles, and augmented reality applications. 
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