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rban flooding poses a growing threat in South Asia due to rapid urbanization, climate-
induced rainfall anomalies, and encroachment of natural floodplains. This study 
presents a comprehensive flood susceptibility mapping and exposure analysis for key 

flood-prone regions of Pakistan, leveraging geospatial big data and deep learning. Multi-source 
datasets—including Sentinel-1 SAR, MODIS NDVI, SRTM DEM, CHIRPS precipitation, 
and socio-economic indicators from WorldPop and WHO—were integrated using a 
Convolutional Neural Network (CNN), Random Forest (RF), and XGBoost classifiers. The 
CNN outperformed others, achieving 93% accuracy and an AUC of 0.96. Spatial analysis 
revealed critical hotspots in Karachi’s North Nazimabad and Korangi, as well as riverine belts 
of Sindh and Punjab, where flood susceptibility overlapped with high population density and 
infrastructure exposure. Approximately 2.3 million people and over 220 km of roadways were 
found within high-risk flood zones. Temporal trend analysis (2010–2023) indicated a 29% 
increase in urban flood extents, closely correlated (r = 0.78) with CHIRPS-based rainfall 
anomalies. SHAP interpretation ranked elevation, slope, NDVI, and NDBI as dominant flood 
predictors. The study provides actionable insights for risk-informed urban planning and 
supports data-driven disaster resilience strategies aligned with SDG 11 and the Sendai 
Framework. 
Keywords: Urban Flooding, Flood Susceptibility Mapping, Geospatial Big Data, Deep 
Learning, Sentinel-1 SAR, CNN, Random Forest, XGBoost, SHAP Values, Climate-Induced 
Rainfall Anomalies 
Introduction: 

The advent of Geospatial Artificial Intelligence (GeoAI) has revolutionized the way 
spatial data is acquired, processed, analyzed, and interpreted. By integrating advanced artificial 
intelligence techniques—especially machine learning (ML) and deep learning (DL)—with 
geospatial technologies, GeoAI provides powerful tools to extract actionable insights from 
the massive and heterogeneous streams of spatial big data. These include remote sensing 
imagery, street-view images, mobile sensor data, social media footprints, and spatiotemporal 
trajectories, among others [1][2]. 

The emergence of domain-aware AI models, geographic knowledge-guided neural 
networks, and geo-foundation models such as GeoGPT and SATLAS, has advanced the 
capacity to address complex challenges in earth observation, environmental monitoring, urban 
computing, and public health [3]. These developments are further facilitated by cloud 
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platforms like Google Earth Engine (GEE), the availability of pretrained large language 
models (LLMs), and open-access high-resolution satellite data. 

Despite the growing prominence of GeoAI in geospatial data analytics, several key 
research gaps continue to hinder its full potential in real-world applications. One major 
limitation lies in the restricted integration of multi-modal geospatial data sources. While 
satellite imagery has been widely used, the fusion of diverse datasets such as street-level 
imagery, GPS trajectories, social media, and textual data remains underdeveloped, limiting the 
depth and contextual richness of spatial analyses [2]. Additionally, there exists a significant 
spatial bias in current GeoAI models, which are predominantly trained on datasets from 
developed regions such as North America, Europe, and parts of East Asia. This imbalance 
results in underrepresentation of the Global South and rural or marginalized regions, reducing 
the global applicability and fairness of GeoAI models [4]. Moreover, most advanced AI models 
employed in geospatial domains, particularly deep learning frameworks, operate as “black 
boxes,” offering limited transparency and interpretability. This lack of explainability is a 
significant concern for decision-makers in critical fields such as disaster response, public 
health, and climate adaptation [3][1]. Reproducibility also remains a challenge due to 
inconsistent data preprocessing, lack of shared codebases, and undocumented hyperparameter 
tuning, further limiting the scientific reliability and scalability of proposed models [1]. 
Furthermore, ethical considerations such as data privacy, fairness, and responsible AI use are 
seldom prioritized in GeoAI research, despite its application in sensitive domains [5]. Finally, 
there is a scarcity of benchmarking studies that evaluate AI models across multiple geospatial 
tasks, which impedes our understanding of model generalizability and domain transferability 
[2]. These gaps highlight the pressing need for integrative, explainable, and ethically grounded 
approaches in GeoAI research, especially those that are inclusive of underrepresented regions 
and capable of leveraging multi-source geospatial big data. 
Research Objectives: 

The primary objectives of this study are multifaceted, aiming to advance the field of 
geospatial artificial intelligence (GeoAI) through rigorous evaluation, methodological 
innovation, and equitable application. First, the study seeks to evaluate and benchmark the 
performance of recent GeoAI models—such as Convolutional Neural Networks (CNNs), 
Transformers, Generative Adversarial Networks (GANs), and graph-based learning—when 
applied to diverse types of geospatial big data. This includes raster data from satellites, vector 
data from GIS, and real-time data from social media and sensors. Secondly, the research 
explores domain-specific applications of GeoAI across three critical areas: urban analytics, 
environmental change detection, and spatial epidemiology. By employing a unified analytical 
framework, the study ensures consistency and comparability across these use cases. 
Novelty Statement: 

This study contributes novel insights to the field of GeoAI by (i) integrating diverse 
AI techniques with spatial analysis across multiple modalities of geospatial data; (ii) proposing 
an explainable and reproducible pipeline for processing and interpreting spatial phenomena; 
and (iii) focusing on equity by highlighting geospatial research gaps and applications in 
underrepresented regions. Unlike previous research that often isolates domains (e.g., only 
remote sensing or only NLP), this work takes a holistic, cross-disciplinary view of GeoAI to 
assess its transformative potential across environmental, urban, and social domains. 
Literature Review: 

The integration of artificial intelligence with geospatial technologies—commonly 
referred to as GeoAI—has revolutionized spatial data processing, interpretation, and decision-
making. GeoAI harnesses the power of machine learning, deep learning, and computer vision 
to extract meaningful insights from vast and complex geospatial datasets, including satellite 
imagery, remote sensing data, aerial drone imagery, street view data, and real-time feeds from 
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IoT devices. According to [1], the emergence of high-resolution satellite sensors and the 
increasing availability of open-source platforms such as Google Earth Engine and Microsoft 
Planetary Computer have accelerated the development and application of GeoAI models 
across fields like disaster response, epidemiology, precision agriculture, and climate science. 
These systems can process multi-temporal, multi-source, and multi-scale data at 
unprecedented speeds, allowing for near-real-time analytics and spatial prediction that were 
previously unattainable using traditional GIS techniques. 

A growing body of literature underscores the pivotal role of foundation models and 
large-scale deep learning architectures in advancing GeoAI applications. For instance, [3] 
introduced GeoGPT, a multimodal large language model that integrates textual and geospatial 
inputs for a wide range of reasoning tasks—ranging from place-type classification to route 
explanation and spatial question answering. This innovation represents a significant leap from 
conventional spatial models by offering generalizability across different geographies and data 
types. Similarly, [2] developed SATLAS, a unified foundation model trained on over 500 
million satellite image tiles, capable of performing tasks such as road extraction, building 
footprint detection, land cover segmentation, and disaster damage assessment with minimal 
supervision. These models signify a shift toward automated geospatial intelligence systems that 
can learn contextual features without requiring task-specific retraining, thus improving 
scalability and robustness. 

Despite these advances, there remain critical concerns surrounding data quality, model 
interpretability, generalization across regions, and ethical implications. One of the most 
persistent issues in GeoAI development is the spatial and temporal imbalance in available 
training datasets. As emphasized by [6], most GeoAI models are trained on data from urban 
or economically developed regions, limiting their applicability in rural, informal, or 
underrepresented areas, especially in the Global South. This spatial bias creates inequities in 
predictive performance, which is particularly concerning in applications such as disaster relief 
or public health, where the consequences of inaccurate predictions are profound. Moreover, 
[4] noted that the lack of standardized benchmarks and model explainability restricts the 
reproducibility and transparency of GeoAI research, making it difficult to assess the fairness 
and robustness of spatial predictions. This issue is compounded by the proprietary nature of 
many commercial remote sensing datasets, which hinders open science and inclusive 
development of GeoAI tools. 

There is also a growing discourse around the ethical deployment of AI in geospatial 
contexts. As [1] pointed out, the use of deep learning models in applications such as population 
monitoring, crime prediction, and environmental surveillance raises significant ethical 
challenges related to privacy, surveillance, and algorithmic bias. While tools such as explainable 
AI (XAI) have been proposed to enhance the interpretability of GeoAI systems, their 
implementation in real-world applications remains limited. The [7] editorial also emphasized 
the need for interdisciplinary collaboration in GeoAI research, calling for the integration of 
human-centered design, ethics, and governance frameworks into spatial AI systems. 
Moreover, advances in cloud computing and the availability of geospatial APIs have led to 
more scalable platforms for training and deploying spatial models, but concerns remain 
regarding computational costs, energy consumption, and environmental sustainability of large-
scale AI training pipelines [2]. 

In response to these challenges, recent efforts have focused on developing inclusive 
datasets, low-cost models, and cloud-native GeoAI workflows. For example, [3] demonstrated 
that integrating crowd-sourced and volunteered geographic information (VGI) with 
foundation models improves performance in marginalized and data-sparse regions. 
Additionally, emerging tools that combine Earth observation with socio-economic data are 
enabling more holistic modeling of spatial processes such as migration, disease diffusion, and 
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urban sprawl. The increasing use of AI in ecological monitoring—such as deforestation 
detection, biodiversity mapping, and soil moisture prediction—also showcases GeoAI’s 
versatility and potential to address sustainability goals. However, to fully realize this potential, 
future research must prioritize spatial fairness, model interpretability, and ethical deployment, 
especially as GeoAI systems become more autonomous and pervasive in decision-making 
contexts. 
Methodology: 

This study employed a multi-source, multi-modal GeoAI framework to address spatial 
prediction and understanding challenges using diverse geospatial datasets. The methodology 
is structured into five main components: (1) study area and data collection, (2) data 
preprocessing and fusion, (3) model development and benchmarking, (4) evaluation and 
reproducibility, and (5) applied case studies. 
Study Area and Data Collection: 

To address the spatial bias prevalent in prior GeoAI research [8][4], this study focused 
on geographically and socioeconomically diverse regions. The study included well-mapped 
urban centers in the Global North (e.g., North America, Europe, East Asia) and 
underrepresented areas in the Global South (e.g., Sub-Saharan Africa, South Asia, Latin 
America). This stratified sampling ensured a balanced representation of global geospatial 
contexts. 
Data were collected from multiple modalities and sources: 
Satellite and Aerial Imagery: High-resolution optical data (Sentinel-2, Landsat 9, Planet 
Scope) and synthetic aperture radar (Sentinel-1) were retrieved from Google Earth Engine 
(GEE) and Microsoft Planetary Computer. These datasets supported applications such as land 
cover classification, change detection, and disaster impact assessment [2]. 
Street-Level Imagery: Crowdsourced imagery from Mapillary and API-derived images from 
Google Street View were used for urban scene interpretation and morphological analysis of 
the built environment. 
Social media and Textual Data: Geotagged posts from Twitter/X, Instagram, and 
Facebook were collected using official APIs and repositories (e.g., GDelt). These were used 
for real-time event detection, public sentiment analysis, and place-based semantic enrichment. 
Sensor Networks and IoT: Environmental sensor readings (e.g., air quality, temperature, 
humidity) and GPS mobility traces from vehicles and mobile devices were collected via 
municipal open data platforms and academic partnerships. 
Administrative and Volunteered Geographic Information (VGI): Census data, 
OpenStreetMap contributions, and participatory mapping outputs provided demographic and 
infrastructure-related contextual layers. 
Data Preprocessing and Fusion: 
Extensive preprocessing ensured data quality, consistency, and compatibility: 
Spatial and Temporal Alignment: All datasets were projected to a unified coordinate 
reference system (WGS84) and synchronized to uniform time intervals using temporal 
interpolation methods. 
Noise Reduction and Imputation: Sensor and mobility datasets with missing or noisy values 
were imputed using spatiotemporal kriging and deep learning-based approaches such as 
spatiotemporal graph neural networks (ST-GNNs). 
Feature Extraction: Semantic features were extracted using pretrained computer vision 
models (e.g., ResNet, Vision Transformers) for imagery, and large language models (e.g., 
BERT, GPT-4) for entity recognition and thematic analysis of textual sources [3]. 
Data Fusion: A cloud-native data fusion framework was implemented using AWS and GCP 
services, creating a unified geospatial feature store. The system integrated raster and vector 
data, ensuring seamless downstream analytics [7]. 
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GeoAI Model Development and Benchmarking: 
The study employed an ensemble of cutting-edge GeoAI models across tasks: 
Convolutional Neural Networks (CNNs): Deployed for pixel-based classification tasks 
such as land cover mapping and building footprint detection from optical and SAR imagery. 
Transformer Architectures: Vision Transformers (ViTs) and multimodal transformers like 
GeoGPT and SATLAS were utilized to jointly model geospatial imagery, text, and sensor data 
[2][3]. 
Graph Neural Networks (GNNs): Used to model spatial interactions in sensor networks, 
urban mobility graphs, and infrastructure layouts. 
Generative Adversarial Networks (GANs): Implemented to augment training data for low-
resource regions and perform image-to-image translation (e.g., SAR-to-optical conversion). 
Explainable AI (XAI): SHAP, LIME, and attention heatmaps were integrated into the 
workflow to enhance interpretability, especially for model outputs in sensitive domains such 
as disaster response or public health [1]. 

Models were trained on stratified datasets representing different global zones. 
Hyperparameters were optimized using Bayesian search and distributed grid search. All 
pipelines were version-controlled (Git), containerized (Docker), and orchestrated using 
MLOps platforms for reproducibility. 
Evaluation Metrics and Reproducibility: 
Model performance was evaluated using standard metrics appropriate to each task: 
Classification Tasks: Overall accuracy, precision, recall, F1-score, and intersection-over-
union (IoU) were used for evaluating land use classification, urban mapping, and object 
detection outputs. 
Regression Tasks: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R² 
were calculated for predicting environmental or mobility-related variables. 
Explainability: XAI effectiveness was assessed using model-agnostic metrics like faithfulness 
and stability, and expert-based qualitative validation of feature attributions. 
Ethical Audits: Bias detection was conducted using disaggregated performance metrics (e.g., 
urban vs. rural, developed vs. developing regions), and fairness-aware loss functions were used 
to mitigate disparities in model outcomes. 

All datasets, preprocessing scripts, trained models, and documentation are publicly 
available via GitHub and Zenodo. Jupyter Notebooks and ReadTheDocs-style guides were 
provided to support full reproducibility. Cloud-based infrastructure (AWS SageMaker, Google 
Vertex AI) was used with active monitoring of energy consumption and carbon footprint, 
addressing the sustainability concerns associated with large-scale AI model training [7]. 
Application Case Studies: 

To validate the framework in real-world contexts, the methodology was applied to 
three interdisciplinary domains: 
Urban Analytics: The fused datasets and models were used to analyze urban growth patterns, 
predict traffic congestion, and evaluate accessibility to public green spaces. 
Environmental Change Detection: Multi-temporal remote sensing and sensor data were 
used to detect deforestation, wetland degradation, and air quality trends across regions. 
Spatial Epidemiology: Disease spread modeling and healthcare access analyses were 
performed by integrating mobility traces, weather patterns, and sentiment extracted from 
social media posts. 

Stakeholder engagement was integrated into each case study through participatory 
workshops with NGOs, local governments, and urban planners. This ensured that the 
outcomes were interpretable, actionable, and ethically grounded. 
Results: 
Model Evaluation and Validation: 
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The comparative analysis of machine learning models for flood susceptibility 
classification demonstrated that the Convolutional Neural Network (CNN) model 
significantly outperformed traditional algorithms, achieving a classification accuracy of 93% 
and an Area Under the Curve (AUC) of 0.96. In contrast, XGBoost and Random Forest (RF) 
yielded AUCs of 0.91 and 0.87, respectively. The CNN model exhibited a high true positive 
rate (TPR) of 94% and a low false positive rate (FPR) of 5%, confirming its strong sensitivity 
and specificity in identifying flood-prone pixels. 

The model reliability was further substantiated through Cohen’s Kappa statistics, 
where CNN scored 0.88, indicating an excellent agreement level beyond chance. XGBoost 
and RF followed with Kappa values of 0.83 and 0.77, respectively. These findings are 
consistent with the thresholds defined by [9], where Kappa values above 0.80 denote excellent 
reliability. The confusion matrix further supported these observations, with CNN showing 
balanced performance across all susceptibility classes. 
Spatial Distribution of Flood Susceptibility Zones: 

The spatial output of the CNN-based susceptibility map classified the study region 
into five categories: very low, low, moderate, high, and very high susceptibility. A considerable 
portion of the area, especially urban fringes and low-lying districts, exhibited moderate to very 
high susceptibility. 

Urban hotspots with elevated flood risk were identified in North Nazimabad, Korangi, 
and Malir districts of Karachi, characterized by encroachments on natural drainage paths and 
limited stormwater infrastructure. In rural areas, high susceptibility zones clustered along the 
Indus and Chenab Rivers, with a notable presence in southern Punjab and Sindh where slopes 
≤ 3° and Normalized Difference Vegetation Index (NDVI) values were ≤ 0.25. These regions 
also corresponded with high normalized difference built-up index (NDBI ≥ 0.35), indicating 
impervious surfaces and dense urbanization. 
Socio-Economic and Infrastructure Exposure Assessment: 

To assess vulnerability and exposure, flood susceptibility zones were intersected with 
population distribution (WorldPop 2023), transportation networks (OpenStreetMap), and 
health infrastructure data (WHO GeoNetwork). The analysis revealed that approximately 2.3 
million people—17.6% of the study area’s population—reside in high or very high flood-risk 
zones. 

Table 1 Furthermore, 53 healthcare facilities, 12 educational institutions, and 220 
kilometers of major road networks were found within the high-exposure zones. Peri-urban 
areas, often developed informally without resilient infrastructure, were the most affected. 
These zones lack adequate drainage, leading to recurring inundation and restricted emergency 
accessibility during flood events. 

Table 1. Summarizes the socio-economic exposure by category: 

Exposure Category High & Very High Zones Percentage Affected 

Population (millions) 2.3 17.6% 

Health Facilities 53 12.2% 

Road Network (km) 220 15.9% 

Schools 12 9.1% 

These results mirror global patterns reported by the United Nations Office for 
Disaster Risk Reduction [10], where rapid urbanization into floodplains increases socio-
economic exposure to climate-induced hazards. 
Temporal Trend Analysis of Flood Events (2010–2023): 

Annual flood footprints were derived from Sentinel-1 Synthetic Aperture Radar (SAR) 
imagery and MODIS-based Normalized Difference Flood Index (NDFI), capturing 



                                                        Frontiers in Computational Spatial Intelligence 

Nov 2023|Vol 01 | Issue 02                                                                   Page |93 

interannual trends. The analysis revealed a 29% increase in flood-affected area in urban 
peripheries between 2010 and 2023. 

The most severe flood years—2010, 2011, 2020, and 2022—coincided with peak 
precipitation events, particularly during monsoon weeks where CHIRPS data indicated rainfall 
anomalies exceeding 250 mm/week. A strong positive correlation (r = 0.78) was found 
between precipitation anomalies and spatial flood spread, confirming the influence of extreme 
hydrometeorological events on urban flooding. 
Feature Importance Interpretation: 

Table 2 To better understand the model’s decision-making, SHAP (SHapley Additive 
exPlanations) values and permutation importance analysis were applied. The top ten 
contributing features, ranked by mean impact on model output, are shown below: 

Table 2. Relative importance of environmental and anthropogenic factors 
influencing flood susceptibility. 

Feature 
Importanc

e (%) 
Interpretation 

Elevation 
(SRTM) 

22.4% 

Low elevation areas 
are more susceptible 
to water 
accumulation 

Slope 14.1% 
Gentle slopes reduce 
runoff speed and 
increase stagnation 

Distance to 
Rivers 

13.5% 
Closer proximity 
increases likelihood 
of riverine flooding 

NDVI 10.3% 

Lower vegetation 
linked to 
impermeable and 
flood-prone surfaces 

NDBI 9.4% 
Built-up areas exhibit 
poor infiltration and 
high runoff 

Soil Type 7.7% 
Clay-dominant soils 
promote surface 
water retention 

Precipitation 
(CHIRPS) 

6.8% 
Heavy rainfall events 
are key flood triggers 

Land Use 5.9% 
Cropland and urban 
areas exhibited higher 
susceptibility 

Drainage 
Density 

4.6% 
Sparse drainage 
networks correlate 
with pooling zones 

LULC Change 
(2000–2020) 

3.3% 
Urban expansion into 
green zones increases 
localized flood risk 

These insights offer critical implications for flood risk mitigation. For instance, urban 
planners could prioritize interventions in low-lying, high NDBI areas with poor drainage 
coverage and incorporate land cover restoration strategies. 



                                                        Frontiers in Computational Spatial Intelligence 

Nov 2023|Vol 01 | Issue 02                                                                   Page |94 

 
Figure 1. Flood Susceptibility Classification Distribution 

This pie chart illustrates the distribution of the study area across five susceptibility 
classes. The majority of the area falls into the "Moderate" (34%) and "High" (23%) categories, 
indicating significant vulnerability. The "Very High" category accounts for 11% of the total, 
emphasizing the critical zones that require immediate attention Figure 2. 

 
Figure 2. Comparison of Model Performance Metrics 

This grouped bar chart compares the performance of three machine learning 
models—Random Forest, XGBoost, and CNN—on five metrics: Accuracy, Precision, Recall, 
F1-Score, and AUC. The CNN model outperforms the others with the highest values across 
all metrics, notably an AUC of 0.96 and Recall of 0.95, indicating superior flood susceptibility 
prediction capability. 
Discussion: 

The findings of this study reveal significant spatial, environmental, and socio-
economic vulnerabilities contributing to flood susceptibility across urban and rural landscapes 
of Pakistan, particularly in metropolitan regions like Karachi and low-lying districts along the 
Indus Basin. The high performance of the Convolutional Neural Network (CNN) model—
demonstrated by an AUC of 0.96 and accuracy of 93%—aligns with recent advances in flood 
prediction studies, where deep learning has outperformed traditional machine learning 
algorithms due to its ability to automatically extract hierarchical spatial features from multi-
source data [11][12]. 

The spatial overlay with historical flood footprints revealed an 87% match, confirming 
model robustness and practical utility. These results are consistent with the work of [13], [14], 
who emphasized the utility of combining high-resolution DEMs, NDVI, and NDBI indices 
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with SAR data for more accurate flood mapping in data-scarce environments. Furthermore, 
the model’s high kappa coefficient (0.88) indicates substantial agreement with ground truth 
data, a crucial metric in geospatial modeling validation [9][15]. 

Urban hotspots such as North Nazimabad, Malir, and Korangi exhibited the highest 
susceptibility, driven largely by unregulated land-use change, low drainage density, and 
encroachment on natural waterways. This aligns with the conclusions of [16], who found that 
built-up expansion into natural floodplains in Karachi significantly exacerbates urban flood 
risks. Similarly, rural flood-prone regions along the Indus and Chenab rivers are characterized 
by low elevation (≤ 3° slope) and poor vegetative cover, which matches regional assessments 
reported by the [10], emphasizing that such geomorphological and hydrological settings 
amplify vulnerability under high precipitation regimes. 

The socio-economic exposure analysis highlights that over 2.3 million people reside in 
high or very high flood susceptibility zones, echoing findings by [17], who warned that 
infrastructure in informal urban settlements remains chronically under-resourced for climate 
resilience. The study’s exposure findings—such as 53 healthcare centers and 220 km of roads 
under threat—corroborate with those of [18], who documented major disruption of healthcare 
and transportation networks during the 2022 monsoonal floods. 

Temporal analysis from 2010 to 2023 shows a rising trend in urban flood footprints, 
particularly in peri-urban areas, driven by land-cover transitions and extreme precipitation 
anomalies. A positive correlation (r = 0.78) between CHIRPS-derived rainfall and flood extent 
underscores the importance of integrating climate reanalysis data into predictive modeling, as 
emphasized by [19], [20] in their work on rainfall-induced flood dynamics in South Asia. 

Feature importance analysis provided critical insights into the hydrological and 
anthropogenic drivers of flood susceptibility. Elevation, slope, and proximity to rivers were 
the top contributors, confirming existing knowledge of terrain-driven flood pathways. 
Vegetation (NDVI), urban density (NDBI), and soil characteristics played notable roles, 
supporting conclusions from [21], who demonstrated that impervious surfaces and clayey soils 
increase surface runoff and delay infiltration during storm events. 

Importantly, this study extends current flood risk literature by integrating deep learning 
with explainable AI techniques such as SHAP values, thereby not only achieving high 
predictive accuracy but also interpretability, a component often lacking in black-box models 
[11][22]. The inclusion of exposure metrics across infrastructure and population adds a 
practical dimension for disaster preparedness and climate-resilient urban planning. 

In sum, this study contributes to the growing body of geospatial flood risk literature 
by offering an accurate, interpretable, and scalable flood susceptibility mapping framework 
tailored for rapidly urbanizing and climate-sensitive regions like Pakistan. However, further 
research could improve temporal generalizability by incorporating real-time hydrological 
sensors and climate forecasts. 
Conclusion: 

This study demonstrates the effectiveness of deep learning and geospatial artificial 
intelligence (GeoAI) in producing high-accuracy flood susceptibility maps and vulnerability 
assessments in data-scarce but flood-prone regions of Pakistan. The CNN model 
outperformed traditional machine learning algorithms in spatial prediction accuracy and 
reliability, while the integration of socio-economic exposure analysis underscored the 
disproportionate impact of flooding on marginalized communities and critical infrastructure. 
The spatial concordance between model predictions and historical flood footprints further 
validates the model’s robustness. Temporal analysis reveals an alarming upward trend in flood 
extent, emphasizing the role of climate variability and unchecked urban expansion. 
Importantly, feature importance rankings revealed that low elevation, proximity to rivers, low 
vegetation index, and high built-up area are key flood determinants—providing planners and 
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decision-makers with targeted indicators for mitigation. These findings offer a scalable 
framework for national and regional disaster preparedness, supporting the design of early 
warning systems, sustainable land-use policies, and climate-resilient infrastructure. Future 
work should explore real-time prediction models and integrate citizen-science flood reports 
for enhanced community engagement and validation. 
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