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U rban flooding poses a growing threat in South Asia due to rapid urbanization, climate-

induced rainfall anomalies, and encroachment of natural floodplains. This study

presents a comprehensive flood susceptibility mapping and exposure analysis for key
flood-prone regions of Pakistan, leveraging geospatial big data and deep learning. Multi-source
datasets—including Sentinel-1 SAR, MODIS NDVI, SRTM DEM, CHIRPS precipitation,
and socio-economic indicators from WorldPop and WHO-—were integrated using a
Convolutional Neural Network (CNN), Random Forest (RF), and XGBoost classifiers. The
CNN outperformed others, achieving 93% accuracy and an AUC of 0.96. Spatial analysis
revealed critical hotspots in Karachi’s North Nazimabad and Korangi, as well as riverine belts
of Sindh and Punjab, where flood susceptibility overlapped with high population density and
infrastructure exposure. Approximately 2.3 million people and over 220 km of roadways were
found within high-risk flood zones. Temporal trend analysis (2010-2023) indicated a 29%
increase in urban flood extents, closely correlated (r = 0.78) with CHIRPS-based rainfall
anomalies. SHAP interpretation ranked elevation, slope, NDVI, and NDBI as dominant flood
predictors. The study provides actionable insights for risk-informed urban planning and
supports data-driven disaster resilience strategies aligned with SDG 11 and the Sendai
Framework.

Keywords: Urban Flooding, Flood Susceptibility Mapping, Geospatial Big Data, Deep
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Introduction:

The advent of Geospatial Artificial Intelligence (GeoAl) has revolutionized the way
spatial data is acquired, processed, analyzed, and interpreted. By integrating advanced artificial
intelligence techniques—especially machine learning (ML) and deep learning (DL)—with
geospatial technologies, GeoAl provides powerful tools to extract actionable insights from
the massive and heterogeneous streams of spatial big data. These include remote sensing
imagery, street-view images, mobile sensor data, social media footprints, and spatiotemporal
trajectories, among others [1][2].

The emergence of domain-aware Al models, geographic knowledge-guided neural
networks, and geo-foundation models such as GeoGPT and SATLAS, has advanced the
capacity to address complex challenges in earth observation, environmental monitoring, urban
computing, and public health [3]. These developments are further facilitated by cloud
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platforms like Google Earth Engine (GEE), the availability of pretrained large language
models (LLMs), and open-access high-resolution satellite data.

Despite the growing prominence of GeoAl in geospatial data analytics, several key
research gaps continue to hinder its full potential in real-world applications. One major
limitation lies in the restricted integration of multi-modal geospatial data sources. While
satellite imagery has been widely used, the fusion of diverse datasets such as street-level
imagery, GPS trajectories, social media, and textual data remains underdeveloped, limiting the
depth and contextual richness of spatial analyses [2]. Additionally, there exists a significant
spatial bias in current GeoAl models, which are predominantly trained on datasets from
developed regions such as North America, Europe, and parts of East Asia. This imbalance
results in underrepresentation of the Global South and rural or marginalized regions, reducing
the global applicability and fairness of GeoAl models [4]. Moreover, most advanced Al models
employed in geospatial domains, particularly deep learning frameworks, operate as “black
boxes,” offering limited transparency and interpretability. This lack of explainability is a
significant concern for decision-makers in critical fields such as disaster response, public
health, and climate adaptation [3][1]. Reproducibility also remains a challenge due to
inconsistent data preprocessing, lack of shared codebases, and undocumented hyperparameter
tuning, further limiting the scientific reliability and scalability of proposed models [1].
Furthermore, ethical considerations such as data privacy, fairness, and responsible Al use are
seldom prioritized in GeoAl research, despite its application in sensitive domains [5]. Finally,
there is a scarcity of benchmarking studies that evaluate AI models across multiple geospatial
tasks, which impedes our understanding of model generalizability and domain transferability
[2]. These gaps highlight the pressing need for integrative, explainable, and ethically grounded
approaches in GeoAl research, especially those that are inclusive of underrepresented regions
and capable of leveraging multi-source geospatial big data.

Research Obijectives:

The primary objectives of this study are multifaceted, aiming to advance the field of
geospatial artificial intelligence (GeoAl) through rigorous evaluation, methodological
innovation, and equitable application. First, the study seeks to evaluate and benchmark the
performance of recent GeoAl models—such as Convolutional Neural Networks (CNNs),
Transformers, Generative Adversarial Networks (GANSs), and graph-based learning—when
applied to diverse types of geospatial big data. This includes raster data from satellites, vector
data from GIS, and real-time data from social media and sensors. Secondly, the research
explores domain-specific applications of GeoAl across three critical areas: urban analytics,
environmental change detection, and spatial epidemiology. By employing a unified analytical
framework, the study ensures consistency and comparability across these use cases.

Novelty Statement:

This study contributes novel insights to the field of GeoAl by (i) integrating diverse
Al techniques with spatial analysis across multiple modalities of geospatial data; (if) proposing
an explainable and reproducible pipeline for processing and interpreting spatial phenomena;
and (iii) focusing on equity by highlighting geospatial research gaps and applications in
underrepresented regions. Unlike previous research that often isolates domains (e.g., only
remote sensing or only NLP), this work takes a holistic, cross-disciplinary view of GeoAl to
assess its transformative potential across environmental, urban, and social domains.
Literature Review:

The integration of artificial intelligence with geospatial technologies—commonly
referred to as GeoAl—has revolutionized spatial data processing, interpretation, and decision-
making. GeoAl harnesses the power of machine learning, deep learning, and computer vision
to extract meaningful insights from vast and complex geospatial datasets, including satellite
imagery, remote sensing data, aerial drone imagery, street view data, and real-time feeds from
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IoT devices. According to [1], the emergence of high-resolution satellite sensors and the
increasing availability of open-source platforms such as Google Earth Engine and Microsoft
Planetary Computer have accelerated the development and application of GeoAl models
across fields like disaster response, epidemiology, precision agriculture, and climate science.
These systems can process multi-temporal, multi-source, and multi-scale data at
unprecedented speeds, allowing for near-real-time analytics and spatial prediction that were
previously unattainable using traditional GIS techniques.

A growing body of literature underscores the pivotal role of foundation models and
large-scale deep learning architectures in advancing GeoAl applications. For instance, [3]
introduced GeoGPT, a multimodal large language model that integrates textual and geospatial
inputs for a wide range of reasoning tasks—ranging from place-type classification to route
explanation and spatial question answering. This innovation represents a significant leap from
conventional spatial models by offering generalizability across different geographies and data
types. Similarly, [2] developed SATLAS, a unified foundation model trained on over 500
million satellite image tiles, capable of performing tasks such as road extraction, building
footprint detection, land cover segmentation, and disaster damage assessment with minimal
supervision. These models signify a shift toward automated geospatial intelligence systems that
can learn contextual features without requiring task-specific retraining, thus improving
scalability and robustness.

Despite these advances, there remain critical concerns surrounding data quality, model
interpretability, generalization across regions, and ethical implications. One of the most
persistent issues in GeoAl development is the spatial and temporal imbalance in available
training datasets. As emphasized by [6], most GeoAl models are trained on data from urban
or economically developed regions, limiting their applicability in rural, informal, or
underrepresented areas, especially in the Global South. This spatial bias creates inequities in
predictive performance, which is particularly concerning in applications such as disaster relief
or public health, where the consequences of inaccurate predictions are profound. Moreover,
[4] noted that the lack of standardized benchmarks and model explainability restricts the
reproducibility and transparency of GeoAl research, making it difficult to assess the fairness
and robustness of spatial predictions. This issue is compounded by the proprietary nature of
many commercial remote sensing datasets, which hinders open science and inclusive
development of GeoAl tools.

There is also a growing discourse around the ethical deployment of Al in geospatial
contexts. As [1] pointed out, the use of deep learning models in applications such as population
monitoring, crime prediction, and environmental surveillance raises significant ethical
challenges related to privacy, surveillance, and algorithmic bias. While tools such as explainable
Al (XAI) have been proposed to enhance the interpretability of GeoAl systems, their
implementation in real-wotld applications remains limited. The [7] editorial also emphasized
the need for interdisciplinary collaboration in GeoAl research, calling for the integration of
human-centered design, ethics, and governance frameworks into spatial Al systems.
Moreover, advances in cloud computing and the availability of geospatial APIs have led to
more scalable platforms for training and deploying spatial models, but concerns remain
regarding computational costs, energy consumption, and environmental sustainability of large-
scale Al training pipelines [2].

In response to these challenges, recent efforts have focused on developing inclusive
datasets, low-cost models, and cloud-native GeoAl workflows. For example, [3] demonstrated
that integrating crowd-sourced and volunteered geographic information (VGI) with
foundation models improves performance in marginalized and data-sparse regions.
Additionally, emerging tools that combine Earth observation with socio-economic data are
enabling more holistic modeling of spatial processes such as migration, disease diffusion, and
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urban sprawl. The increasing use of Al in ecological monitoring—such as deforestation
detection, biodiversity mapping, and soil moisture prediction—also showcases GeoAl’s
versatility and potential to address sustainability goals. However, to fully realize this potential,
future research must prioritize spatial fairness, model interpretability, and ethical deployment,
especially as GeoAl systems become more autonomous and pervasive in decision-making
contexts.

Methodology:

This study employed a multi-source, multi-modal GeoAl framework to address spatial
prediction and understanding challenges using diverse geospatial datasets. The methodology
is structured into five main components: (1) study area and data collection, (2) data
preprocessing and fusion, (3) model development and benchmarking, (4) evaluation and
reproducibility, and (5) applied case studies.

Study Area and Data Collection:

To address the spatial bias prevalent in prior GeoAl research [8][4], this study focused
on geographically and socioeconomically diverse regions. The study included well-mapped
urban centers in the Global North (e.g., North America, Europe, East Asia) and
underrepresented areas in the Global South (e.g., Sub-Saharan Africa, South Asia, Latin
America). This stratified sampling ensured a balanced representation of global geospatial
contexts.

Data were collected from multiple modalities and sources:

Satellite and Aerial Imagery: High-resolution optical data (Sentinel-2, Landsat 9, Planet
Scope) and synthetic aperture radar (Sentinel-1) were retrieved from Google Earth Engine
(GEE) and Microsoft Planetary Computer. These datasets supported applications such as land
cover classification, change detection, and disaster impact assessment [2].

Street-Level Imagery: Crowdsourced imagery from Mapillary and API-derived images from
Google Street View were used for urban scene interpretation and morphological analysis of
the built environment.

Social media and Textual Data: Geotagged posts from Twitter/X, Instagram, and
Facebook were collected using official APIs and repositories (e.g., GDelt). These were used
for real-time event detection, public sentiment analysis, and place-based semantic enrichment.
Sensor Networks and IoT: Environmental sensor readings (e.g., air quality, temperature,
humidity) and GPS mobility traces from vehicles and mobile devices were collected via
municipal open data platforms and academic partnerships.

Administrative and Volunteered Geographic Information (VGI): Census data,
OpenStreetMap contributions, and participatory mapping outputs provided demographic and
infrastructure-related contextual layers.

Data Preprocessing and Fusion:

Extensive preprocessing ensured data quality, consistency, and compatibility:

Spatial and Temporal Alignment: All datasets were projected to a unified coordinate
reference system (WGS84) and synchronized to uniform time intervals using temporal
interpolation methods.

Noise Reduction and Imputation: Sensor and mobility datasets with missing or noisy values
were imputed using spatiotemporal kriging and deep learning-based approaches such as
spatiotemporal graph neural networks (ST-GNNss).

Feature Extraction: Semantic features were extracted using pretrained computer vision
models (e.g., ResNet, Vision Transformers) for imagery, and large language models (e.g.,
BERT, GPT-4) for entity recognition and thematic analysis of textual sources [3].

Data Fusion: A cloud-native data fusion framework was implemented using AWS and GCP
services, creating a unified geospatial feature store. The system integrated raster and vector
data, ensuring seamless downstream analytics [7].
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GeoAl Model Development and Benchmarking:

The study employed an ensemble of cutting-edge GeoAl models across tasks:
Convolutional Neural Networks (CNNs): Deployed for pixel-based classification tasks
such as land cover mapping and building footprint detection from optical and SAR imagery.
Transformer Architectures: Vision Transformers (ViTs) and multimodal transformers like
GeoGPT and SATLAS were utilized to jointly model geospatial imagery, text, and sensor data
2131,

Graph Neural Networks (GNNs): Used to model spatial interactions in sensor networks,
urban mobility graphs, and infrastructure layouts.

Generative Adversarial Networks (GANSs): Implemented to augment training data for low-
resource regions and perform image-to-image translation (e.g., SAR-to-optical conversion).
Explainable AI (XAI): SHAP, LIME, and attention heatmaps were integrated into the
workflow to enhance interpretability, especially for model outputs in sensitive domains such
as disaster response or public health [1].

Models were trained on stratified datasets representing different global zones.
Hyperparameters were optimized using Bayesian search and distributed grid search. All
pipelines were version-controlled (Git), containerized (Docker), and orchestrated using
MILOps platforms for reproducibility.

Evaluation Metrics and Reproducibility:

Model performance was evaluated using standard metrics appropriate to each task:
Classification Tasks: Overall accuracy, precision, recall, Fl-score, and intersection-over-
union (IoU) were used for evaluating land use classification, urban mapping, and object
detection outputs.

Regression Tasks: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R?
were calculated for predicting environmental or mobility-related variables.

Explainability: XAl effectiveness was assessed using model-agnostic metrics like faithfulness
and stability, and expert-based qualitative validation of feature attributions.

Ethical Audits: Bias detection was conducted using disaggregated performance metrics (e.g.,
urban vs. rural, developed vs. developing regions), and fairness-aware loss functions were used
to mitigate disparities in model outcomes.

All datasets, preprocessing scripts, trained models, and documentation are publicly
available via GitHub and Zenodo. Jupyter Notebooks and ReadTheDocs-style guides were
provided to support full reproducibility. Cloud-based infrastructure (AWS SageMaker, Google
Vertex Al) was used with active monitoring of energy consumption and carbon footprint,
addressing the sustainability concerns associated with large-scale Al model training [7].
Application Case Studies:

To validate the framework in real-world contexts, the methodology was applied to
three interdisciplinary domains:

Urban Analytics: The fused datasets and models were used to analyze urban growth patterns,
predict traffic congestion, and evaluate accessibility to public green spaces.

Environmental Change Detection: Multi-temporal remote sensing and sensor data were
used to detect deforestation, wetland degradation, and air quality trends across regions.
Spatial Epidemiology: Discase spread modeling and healthcare access analyses were
performed by integrating mobility traces, weather patterns, and sentiment extracted from
social media posts.

Stakeholder engagement was integrated into each case study through participatory
workshops with NGOs, local governments, and urban planners. This ensured that the
outcomes were interpretable, actionable, and ethically grounded.

Results:
Model Evaluation and Validation:
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The comparative analysis of machine learning models for flood susceptibility
classification demonstrated that the Convolutional Neural Network (CNN) model
significantly outperformed traditional algorithms, achieving a classification accuracy of 93%
and an Area Under the Curve (AUC) of 0.96. In contrast, XGBoost and Random Forest (RF)
yielded AUCs of 0.91 and 0.87, respectively. The CNN model exhibited a high true positive
rate (TPR) of 94% and a low false positive rate (FPR) of 5%, confirming its strong sensitivity
and specificity in identifying flood-prone pixels.

The model reliability was further substantiated through Cohen’s Kappa statistics,
where CNN scored 0.88, indicating an excellent agreement level beyond chance. XGBoost
and RF followed with Kappa values of 0.83 and 0.77, respectively. These findings are
consistent with the thresholds defined by [9], where Kappa values above 0.80 denote excellent
reliability. The confusion matrix further supported these observations, with CNN showing
balanced performance across all susceptibility classes.

Spatial Distribution of Flood Susceptibility Zones:

The spatial output of the CNN-based susceptibility map classified the study region
into five categories: very low, low, moderate, high, and very high susceptibility. A considerable
portion of the area, especially urban fringes and low-lying districts, exhibited moderate to very
high susceptibility.

Urban hotspots with elevated flood risk were identified in North Nazimabad, Korangi,
and Malir districts of Karachi, characterized by encroachments on natural drainage paths and
limited stormwater infrastructure. In rural areas, high susceptibility zones clustered along the
Indus and Chenab Rivers, with a notable presence in southern Punjab and Sindh where slopes
< 3° and Normalized Difference Vegetation Index (NDVI) values were < 0.25. These regions
also corresponded with high normalized difference built-up index (NDBI = 0.35), indicating
impervious surfaces and dense urbanization.

Socio-Economic and Infrastructure Exposure Assessment:

To assess vulnerability and exposure, flood susceptibility zones were intersected with
population distribution (WorldPop 2023), transportation networks (OpenStreetMap), and
health infrastructure data (WHO GeoNetwork). The analysis revealed that approximately 2.3
million people—17.6% of the study area’s population—reside in high or very high flood-risk
zones.

Table 1 Furthermore, 53 healthcare facilities, 12 educational institutions, and 220
kilometers of major road networks were found within the high-exposure zones. Peri-urban
areas, often developed informally without resilient infrastructure, were the most affected.
These zones lack adequate drainage, leading to recurring inundation and restricted emergency
accessibility during flood events.

Table 1. Summarizes the socio-economic exposure by category:

Exposure Category | High & Very High Zones | Percentage Affected
Population (millions) 2.3 17.6%
Health Facilities 53 12.2%
Road Network (km) 220 15.9%
Schools 12 9.1%

These results mirror global patterns reported by the United Nations Office for
Disaster Risk Reduction [10], where rapid urbanization into floodplains increases socio-
economic exposure to climate-induced hazards.

Temporal Trend Analysis of Flood Events (2010-2023):

Annual flood footprints were derived from Sentinel-1 Synthetic Aperture Radar (SAR)

imagery and MODIS-based Normalized Difference Flood Index (NDFI), capturing
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interannual trends. The analysis revealed a 29% increase in flood-affected area in urban

peripheries between 2010 and 2023.

The most severe flood years—2010, 2011, 2020, and 2022—coincided with peak
precipitation events, particularly during monsoon weeks where CHIRPS data indicated rainfall
anomalies exceeding 250 mm/week. A strong positive correlation (r = 0.78) was found
between precipitation anomalies and spatial flood spread, confirming the influence of extreme
hydrometeorological events on urban flooding,.

Feature Importance Interpretation:

Table 2 To better understand the model’s decision-making, SHAP (SHapley Additive
exPlanations) values and permutation importance analysis were applied. The top ten

contributing features, ranked by mean impact on model output, are shown below:

Table 2. Relative importance of environmental and anthropogenic factors
influencing flood susceptibility.

Feature Imf (()‘f/f) ;mc Interpretation
Low elevation areas
Elevation 0 are more susceptible
(SRTM) 22.4% to water
accumulation
Gentle slopes reduce
Slope 14.1% runoff speed and
increase stagnation
. Closer proximit
Distance to 135% | increases Hkelihood
Rivers .. :
of riverine flooding
Lower vegetation
linked to
NDVI 10.3% .
impermeable and
flood-prone surfaces
Built-up areas exhibit
NDBI 9.4% poor infiltration and
high runoff
Clay-dominant soils
Soil Type 7.7% promote surface
water retention
Precipitation 6.8% Heavy rainfall events
(CHIRPS) ] are key flood triggers
Cropland and urban
Land Use 5.9% areas exhibited higher
susceptibility
. Sparse drainage
Dralqage 4.6% nle)tworks corrgelate
Density . .
with pooling zones
LULC Change T Utrban expagsion into
(2000-2020) 3% green zones increases
localized flood risk

These insights offer critical implications for flood risk mitigation. For instance, urban
planners could prioritize interventions in low-lying, high NDBI areas with poor drainage
coverage and incorporate land cover restoration strategies.

Nov 2023 | Vol 01 | Issue 02

Page | 93



OPEN ACCESS . . . . .
8 Frontiers in Computational Spatial Intelligence
High

Very High

Very Low

Low

Moderate

Figure 1. Flood Susceptibility Classification Distribution
This pie chart illustrates the distribution of the study area across five susceptibility
classes. The majority of the area falls into the "Moderate" (34%) and "High" (23%) categories,
indicating significant vulnerability. The "Very High" category accounts for 11% of the total,

emphasizing the critical zones that require immediate attention Figure 2.
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Figure 2. Comparison of Model Performance Metrics

This grouped bar chart compares the performance of three machine learning
models—Random Forest, XGBoost, and CNN—on five metrics: Accuracy, Precision, Recall,
F1-Score, and AUC. The CNN model outperforms the others with the highest values across
all metrics, notably an AUC of 0.96 and Recall of 0.95, indicating superior flood susceptibility
prediction capability.

Discussion:

The findings of this study reveal significant spatial, environmental, and socio-
economic vulnerabilities contributing to flood susceptibility across urban and rural landscapes
of Pakistan, particularly in metropolitan regions like Karachi and low-lying districts along the
Indus Basin. The high performance of the Convolutional Neural Network (CNN) model—
demonstrated by an AUC of 0.96 and accuracy of 93%—aligns with recent advances in flood
prediction studies, where deep learning has outperformed traditional machine learning
algorithms due to its ability to automatically extract hierarchical spatial features from multi-
source data [11][12].

The spatial overlay with historical flood footprints revealed an 87% match, confirming
model robustness and practical utility. These results are consistent with the work of [13], [14],
who emphasized the utility of combining high-resolution DEMs, NDVI, and NDBI indices
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with SAR data for more accurate flood mapping in data-scarce environments. Furthermore,
the model’s high kappa coefficient (0.88) indicates substantial agreement with ground truth
data, a crucial metric in geospatial modeling validation [9][15].

Urban hotspots such as North Nazimabad, Malir, and Korangi exhibited the highest
susceptibility, driven largely by unregulated land-use change, low drainage density, and
encroachment on natural waterways. This aligns with the conclusions of [16], who found that
built-up expansion into natural floodplains in Karachi significantly exacerbates urban flood
risks. Similarly, rural flood-prone regions along the Indus and Chenab rivers are characterized
by low elevation (= 3° slope) and poor vegetative cover, which matches regional assessments
reported by the [10], emphasizing that such geomorphological and hydrological settings
amplify vulnerability under high precipitation regimes.

The socio-economic exposure analysis highlights that over 2.3 million people reside in
high or very high flood susceptibility zones, echoing findings by [17], who warned that
infrastructure in informal urban settlements remains chronically under-resourced for climate
resilience. The study’s exposure findings—such as 53 healthcare centers and 220 km of roads
under threat—corroborate with those of [18], who documented major disruption of healthcare
and transportation networks during the 2022 monsoonal floods.

Temporal analysis from 2010 to 2023 shows a rising trend in urban flood footprints,
particularly in peri-urban areas, driven by land-cover transitions and extreme precipitation
anomalies. A positive correlation (r = 0.78) between CHIRPS-derived rainfall and flood extent
underscores the importance of integrating climate reanalysis data into predictive modeling, as
emphasized by [19], [20] in their work on rainfall-induced flood dynamics in South Asia.

Feature importance analysis provided critical insights into the hydrological and
anthropogenic drivers of flood susceptibility. Elevation, slope, and proximity to rivers were
the top contributors, confirming existing knowledge of terrain-driven flood pathways.
Vegetation (NDVI), urban density (NDBI), and soil characteristics played notable roles,
supporting conclusions from [21], who demonstrated that impervious surfaces and clayey soils
increase surface runoff and delay infiltration during storm events.

Importantly, this study extends current flood risk literature by integrating deep learning
with explainable Al techniques such as SHAP wvalues, thereby not only achieving high
predictive accuracy but also interpretability, a component often lacking in black-box models
[11]]22]. The inclusion of exposure metrics across infrastructure and population adds a
practical dimension for disaster preparedness and climate-resilient urban planning.

In sum, this study contributes to the growing body of geospatial flood risk literature
by offering an accurate, interpretable, and scalable flood susceptibility mapping framework
tailored for rapidly urbanizing and climate-sensitive regions like Pakistan. However, further
research could improve temporal generalizability by incorporating real-time hydrological
sensors and climate forecasts.

Conclusion:

This study demonstrates the effectiveness of deep learning and geospatial artificial
intelligence (GeoAl) in producing high-accuracy flood susceptibility maps and vulnerability
assessments in data-scarce but flood-prone regions of Pakistan. The CNN model
outperformed traditional machine learning algorithms in spatial prediction accuracy and
reliability, while the integration of socio-economic exposure analysis underscored the
disproportionate impact of flooding on marginalized communities and critical infrastructure.
The spatial concordance between model predictions and historical flood footprints further
validates the model’s robustness. Temporal analysis reveals an alarming upward trend in flood
extent, emphasizing the role of climate variability and unchecked urban expansion.
Importantly, feature importance rankings revealed that low elevation, proximity to rivers, low
vegetation index, and high built-up area are key flood determinants—providing planners and
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decision-makers with targeted indicators for mitigation. These findings offer a scalable

framework for national and regional disaster preparedness, supporting the design of early

warning systems, sustainable land-use policies, and climate-resilient infrastructure. Future
work should explore real-time prediction models and integrate citizen-science flood reports
for enhanced community engagement and validation.
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