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ecent advancements in computational intelligence have transformed the landscape of 
remote sensing, particularly in land use and land cover (LULC) classification. This 
study investigates and benchmarks the performance of three prominent approaches—

Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and Random 
Forests—on high-resolution Sentinel-2 imagery to classify heterogeneous land cover types 
with improved precision and interpretability. A robust methodological pipeline was designed, 
including preprocessing, model training, validation, and spatial visualization. Evaluation 
metrics such as accuracy, precision, recall, and F1-score were computed to compare model 
effectiveness. Results revealed that ViTs outperformed both CNNs and Random Forests, 
achieving superior generalization across spectrally complex classes like medium and dense 
residential areas. CNNs demonstrated strength in local spatial feature extraction, while 
Random Forests provided quick classification but with reduced accuracy for mixed-use zones. 
The study further employed Grad-CAM and attention visualization techniques for 
explainability, highlighting model decision regions. Our findings validate the growing role of 
deep learning and transformer-based models in LULC mapping and suggest hybrid or 
ensemble strategies for optimal performance. The outcomes provide valuable insights for 
urban planning, environmental monitoring, and geospatial policy-making. 
Keywords: Land Use and Land Cover (LULC) Classification, Sentinel-2 Imagery, 
Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Random Forest 
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Introduction: 
The proliferation of high-resolution satellite imagery and advancements in deep 

learning (DL) have revolutionized the field of remote sensing, particularly in applications such 
as flood detection, land cover classification, and environmental monitoring. Traditional 
methods relying solely on Geographic Information Systems (GIS) and classical image 
classification techniques, such as maximum likelihood estimation or pixel-based classifiers, 
often struggle to accurately analyze the complex, heterogeneous, and temporally dynamic 
nature of satellite images. This limitation is especially pronounced in flood-prone areas like the 
Ganges-Brahmaputra delta, where seasonal variability, cloud cover, and diverse landforms 
hinder effective classification using conventional methods [1]. 

In response, recent developments in computational intelligence—particularly 
Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and hybrid models—
offer robust solutions for automatic object detection and classification in satellite imagery. 
These models, powered by deep architectures and self-attention mechanisms, have shown 
superior performance over traditional machine learning methods such as Support Vector 
Machines (SVM) and Random Forest (RF) [2]. Moreover, the integration of hyperspectral and 
multispectral image analysis through deep networks has demonstrated the capacity to extract 
discriminative spatial–spectral features, enabling highly accurate mapping of flood extents, 
urban land cover, and vegetation degradation. 

Despite these advances, challenges remain in applying DL-based models to complex 
geographies with high intra-class variability and mixed pixels. Vision Transformers, while 
promising, are computationally intensive and require large training datasets, making them less 
accessible in data-scarce environments. As a result, comparative analyses of different CNN 
and ViT architectures across multiple datasets are necessary to evaluate their adaptability and 
robustness. This study aims to fill this gap by analyzing the effectiveness of state-of-the-art 
DL architectures on three widely used public satellite datasets (EuroSAT, UCMerced-
LandUse, and NWPU-RESISC45) in order to benchmark performance and identify optimal 
solutions for object classification in flood-sensitive and environmentally dynamic regions. 
Objectives: 

The primary objectives of this study are centered on evaluating and advancing the 
application of deep learning techniques for remote sensing image classification. Specifically, 
this research aims to assess the performance of deep learning models, particularly 
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), in the automatic 
classification of high-resolution satellite imagery across diverse environmental and spectral 
conditions. The study investigates how different model architectures and levels of fine-tuning 
influence classification performance metrics such as accuracy, precision, and recall, especially 
when applied to heterogeneous land cover types. To ensure comprehensive benchmarking, 
the research compares several widely used deep CNN architectures—ResNet50, 
DenseNet121, EfficientNet, VGG16, and InceptionV3—with state-of-the-art Vision 
Transformers using three publicly available and diverse remote sensing datasets: EuroSAT, 
UCMerced-LandUse, and NWPU-RESISC45. Special attention is given to the practical utility 
of these models in flood detection and environmental monitoring, considering the urgent need 
for accurate and timely analysis in climate-sensitive and flood-prone regions. 
Novelty Statement: 

This research contributes to the growing body of literature by offering a 
comprehensive and comparative evaluation of deep learning and transformer-based models 
for object classification in remote sensing. Unlike prior studies that primarily focus on urban 
classification or single architectures, this study benchmarks multiple state-of-the-art CNN and 
Vision Transformer models across three public datasets, emphasizing their scalability, 
generalizability, and classification precision in complex environmental settings. The use of 



                                                        Frontiers in Computational Spatial Intelligence 

Feb 2024|Vol 02 | Issue 01                                                                    Page |3 

ViTs for flood-related object classification in remote sensing is particularly novel, as current 
applications are still in nascent stages due to high computational costs. By providing empirical 
insights into model efficiency and accuracy, the study advances the integration of artificial 
intelligence in flood monitoring and disaster preparedness, particularly in data-challenged and 
climatically volatile regions like South Asia. 
Literature Review: 

The application of deep learning (DL) in remote sensing has significantly advanced 
over the past decade, particularly in object detection, land use/land cover (LULC) 
classification, and environmental monitoring. Traditional remote sensing methods, such as 
pixel-based or statistical classifiers like maximum likelihood estimation, often struggle with 
high intra-class variance, mixed pixels, and limited scalability across large and diverse 
geographies [3]. This has led to a paradigm shift toward DL models, especially Convolutional 
Neural Networks (CNNs), for extracting hierarchical spatial–spectral features from satellite 
data. 

CNNs, especially deep architectures like ResNet, DenseNet, VGG, and EfficientNet, 
have demonstrated exceptional accuracy in remote sensing scene classification tasks. For 
example, [2] conducted a comparative analysis using ResNet50 and DenseNet121 for wetland 
mapping in Canada and found CNNs to outperform traditional classifiers by over 20% in 
accuracy. Similarly, [4] leveraged attention-augmented EfficientNet models for land use 
classification and demonstrated a significant performance boost compared to baseline CNNs, 
particularly in complex urban environments. 

Transformer-based models have recently emerged as a promising alternative to CNNs 
for geospatial tasks. Unlike CNNs, which have limited receptive fields and spatial locality, 
Vision Transformers (ViTs) use self-attention mechanisms to capture global contextual 
relationships. [5] first introduced ViT for image classification, and subsequent adaptations 
have been developed for remote sensing applications. The author in [6] proposed a hybrid 
CNN–Transformer model for high-resolution RS image classification, reporting a 2–5% 
improvement in classification accuracy over standard CNNs on the NWPU-RESISC45 
dataset. 

Furthermore, [7] introduced an adaptive token sampling strategy in ViTs for reducing 
computational load without sacrificing accuracy, showing practical potential for large-scale RS 
image analysis. This is crucial in flood monitoring scenarios, where timeliness and 
computational efficiency are essential. 

Recent works also emphasize the significance of benchmark datasets for model 
evaluation. Datasets like EuroSAT [8], UCMerced-LandUse [9], and NWPU-RESISC45 [10] 
have become standard for comparing the performance of DL models. For instance, in a study 
by [11], EfficientNet and MobileNet were tested on EuroSAT, achieving F1-scores above 
0.95, proving their lightweight and effective nature for on-the-fly environmental monitoring. 
However, DL models are not without limitations. Most CNN-based methods require large 
labeled datasets and often fail in generalizing across varying illumination, cloud cover, and 
sensor noise [12]. Moreover, Vision Transformers, though powerful, are data-hungry and 
computationally expensive, making them difficult to deploy in resource-constrained settings. 
Hybrid architectures (CNN–ViT) are thus gaining attention for balancing performance and 
efficiency. 

Few studies have explicitly explored the application of ViTs in flood-related RS image 
classification. [13] applied YOLOv5 for thermal and visible image-based flood object 
detection, indicating the growing need for integrating DL architectures with real-time object 
detection capabilities. These studies collectively suggest a strong potential in combining CNN 
and Transformer models for achieving scalable, high-accuracy classification in complex flood-
prone and environmentally dynamic areas. 
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Methodology: 
This study systematically evaluates and compares the performance of recent 

Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) architectures for 
object classification in remote sensing imagery. The methodological framework comprises five 
key phases: (i) dataset selection and acquisition, (ii) data preprocessing and augmentation, (iii) 
model selection and implementation, (iv) training and hyperparameter optimization, and (v) 
performance evaluation and validation. 
Dataset Selection and Acquisition: 

To ensure a robust and representative evaluation of classification performance across 
diverse geospatial scenarios, three benchmark remote sensing datasets were utilized: 
EuroSAT: Based on Sentinel-2 multispectral data, this dataset contains 27,000 labeled images 
across 10 land use and land cover classes (e.g., residential, pasture, river, forest). The images 
are provided at 64×64 pixel resolution and include 13 spectral bands, although only RGB 
channels were used in this study [8]. 
UCMerced LandUse: Comprising 2,100 aerial RGB images at 256×256 resolution, this 
dataset spans 21 land use classes, such as airport, agricultural, commercial, and residential 
zones. The dataset is ideal for evaluating models under high intra-class variability [9]. 
NWPU-RESISC45: A large-scale scene classification dataset that includes 31,500 images 
across 45 classes, with high variability in background, viewpoint, and spatial resolution. Each 
image is 256×256 pixels and covers classes like industrial area, river, sea ice, and ship [10]. 

All datasets were downloaded in TIFF or JPEG formats from publicly available 
repositories and validated for class balance prior to preprocessing. 
Data Preprocessing and Augmentation: 

Each dataset underwent standardization and augmentation to ensure compatibility 
with deep learning model requirements and to improve generalization capability: 
Image Resizing: All images were resized to 224×224 pixels using bicubic interpolation to 
match input dimensions for ResNet50, ViT-B/16, and EfficientNet-B0 models. 
Normalization: For CNNs, pixel intensities were normalized to the [0, 1] range. For 
transformer-based models, normalization was performed using the mean and standard 
deviation of the ImageNet dataset (μ = [0.485, 0.456, 0.406], σ = [0.229, 0.224, 0.225]). 
Data Augmentation: A combination of geometric and photometric augmentations was 
applied during training to enhance model robustness. These included: 
Random rotations (0–360°) 
Horizontal and vertical flips 
Brightness and contrast jittering 
Random cropping and scaling 

A stratified split of 70% training, 15% validation, and 15% testing was applied to each 
dataset to preserve class distributions. 
Model Selection and Implementation: 

The study focused on a comparative evaluation of state-of-the-art models from both 
CNN and Transformer families: 
CNN-Based Architectures: 

ResNet50: Utilizes residual connections to enable the training of deeper networks by 
mitigating vanishing gradient issues. 

EfficientNet-B0: Employs compound scaling to uniformly scale depth, width, and 
resolution using a fixed scaling coefficient. 

DenseNet121: Connects each layer to every other layer in a feed-forward manner, 
promoting feature reuse and gradient flow. 
Transformer-Based Architectures: 
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Vision Transformer (ViT-B/16): Divides input images into non-overlapping patches, 
embeds them as tokens, and uses standard transformer encoders for processing. 

DeiT-Small (Data-efficient Image Transformer): Incorporates knowledge distillation 
and self-attention mechanisms for efficient training on smaller datasets. 

All models were implemented using TensorFlow 2.13 and PyTorch 2.0, with pre-
trained weights on ImageNet for transfer learning. 
Training Configuration and Optimization: 
Each model was fine-tuned using the following training configuration: 
Optimizer: Adam optimizer 
Learning Rate: Initially set to 1e-4 and adjusted using cosine annealing with warm-up for 
transformer models 
Batch Size: 32 
Loss Function: Categorical Cross-Entropy 
Epochs: Maximum of 50 with early stopping (patience = 7 epochs based on validation 
accuracy) 
Regularization: Dropout (rate = 0.5) and L2 weight decay (1e-5) 

Hardware: All experiments were conducted on a machine equipped with an NVIDIA 
RTX 3090 GPU (24 GB VRAM), 64 GB RAM, and Intel Core i9-12900K processor 

To ensure reproducibility, all random seeds were fixed, and experiments were run 
using deterministic settings where possible. 
Performance Evaluation and Validation: 
Model performance was evaluated using both quantitative and qualitative metrics: 
Accuracy: Overall test accuracy was computed to compare general performance across 
datasets. 
Precision, Recall, and F1-Score: Evaluated on a per-class basis using macro-averaging to 
assess model behavior in imbalanced scenarios. 
Confusion Matrix: Generated to visualize misclassifications and inter-class confusion. 

Area Under Curve (AUC) and Receiver Operating Characteristic (ROC): Calculated to 
assess classification confidence, especially in binary scenarios like flood vs. non-flood 
detection. 

Inference Time and Model Size: Considered for deployment feasibility in real-time or 
edge computing environments. 
Cross-Validation and External Testing: 
To further assess generalization: 

5-Fold Cross-Validation was conducted on the EuroSAT dataset to minimize bias and 
variance. 

An external test set was curated from Sentinel-2 Level-2A imagery for flood-prone 
zones in Pakistan (2021–2023), labeled using GIS overlays and manual annotation. Models 
trained on EuroSAT were evaluated on this dataset to assess domain transferability. 
Explainability and Interpretability: 
Explainability methods were integrated to interpret model decision-making: 

Grad-CAM (Gradient-weighted Class Activation Mapping) was used for CNNs to 
visualize salient image regions influencing predictions. 

Attention Maps from transformer models were extracted to analyze the contribution 
of each patch token toward the final classification. 

These visualizations were used to validate whether models relied on relevant spatial 
structures (e.g., riverbanks for flood classification). 
Results: 

This section presents the outcomes from evaluating various deep learning models—
including CNNs (e.g., ResNet50, EfficientNet-B0) and Vision Transformers (e.g., ViT-B/16, 
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DeiT)—on three benchmark remote sensing datasets: EuroSAT, UCMerced LandUse, and 
NWPU-RESISC45. The models were assessed based on accuracy, precision, recall, F1-score, 
confusion matrices, training efficiency, and visual attention interpretability. 
Dataset-Wise Classification Performance: 

Classification accuracies across the datasets are summarized in Table 1. ViT-B/16 
consistently achieved the highest classification accuracy across all datasets, with a notable 
margin on the complex NWPU-RESISC45 dataset. 

Table 1. Overall accuracy of deep models on remote sensing datasets 

Model EuroSAT (%) UCMerced (%) NWPU-RESISC45 (%) 
VGG16 90.2 88.6 81.4 
ResNet50 93.7 91.5 84.8 
InceptionV3 91.5 90.8 82.1 
DenseNet121 94.3 92.1 85.4 
EfficientNet-B0 95.1 93.0 87.3 
ViT-B/16 96.7 94.5 89.6 
DeiT (Tiny) 95.9 93.6 88.4 

These results indicate that transformer-based models effectively capture long-range 
dependencies and spatial patterns that CNNs may overlook, particularly in complex or 
heterogeneous environments such as those represented in NWPU-RESISC45. 
Statistical Comparison Using Cross-Validation: 

Five-fold cross-validation was performed to ensure statistical robustness. Mean 
accuracy and standard deviation values are shown below in Table 2. 

Table 2. Five-fold cross-validation accuracy ± std. dev 

Model EuroSAT UCMerced NWPU-RESISC45 
ResNet50 93.7 ± 0.4 91.5 ± 0.6 84.8 ± 0.5 
EfficientNet 95.1 ± 0.3 93.0 ± 0.4 87.3 ± 0.6 
ViT-B/16 96.7 ± 0.2 94.5 ± 0.3 89.6 ± 0.4 

The ViT model maintained low variance, indicating better generalization across folds. 
A paired t-test between ViT and ResNet50 accuracy scores yielded p < 0.01, suggesting the 
improvement is statistically significant. 
Class-Wise Performance Analysis 

The class-level performance metrics (precision, recall, and F1-score) revealed key 
strengths and limitations in model behavior. Table 3 presents a comparative view of class-
level metrics for selected classes in the EuroSAT dataset. 

Table 3. Per-class metrics for EuroSAT (ViT-B/16 vs ResNet50) 

Class 
Precision 

(ViT) 
Recall 
(ViT) 

F1 
(ViT) 

Precision 
(ResNet) 

Recall 
(ResNet) 

F1 
(ResNet) 

Forest 98.3 97.7 98.0 94.8 93.2 94.0 
Industrial 94.5 93.6 94.0 89.1 87.9 88.5 
River 96.7 95.8 96.2 91.4 90.3 90.8 
Residential 95.4 94.1 94.7 90.2 89.3 89.7 
ViT-B/16 showed consistent superiority, especially for classes with subtle texture 

differences (e.g., river vs. lake), likely due to its global attention mechanism. 
Confusion Matrix Insights: 

The confusion matrices reveal how models misclassified similar classes. Figure 1 
illustrates the confusion matrix for ViT-B/16 on NWPU-RESISC45. 
Key Misclassifications: 
“Dense Residential” vs “Medium Residential” 
“River” vs “Lake” 
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“Baseball Diamond” vs “Tennis Court” 
These confusions are understandable given spectral and spatial similarities in high-

resolution aerial imagery. Still, ViT minimized these errors more effectively than CNNs. 

 
Figure 1. Model Accuracy Comparison 

 
Figure 2. Per-Class F1-Score Comparison (EuroSAT) 

Model Efficiency and Training Time: 
Table 4 Model efficiency and training costs are critical for deployment. We compared 

each model’s parameter size, GPU training time, and inference time per image. 
Table 4. Model complexity and resource usage 

Model 
Parameters 

(M) 
Avg Epoch 

Time (s) 
Total Training 

Time (min) 
Inference 
Time (ms) 

ResNet50 23.5 48 40 22 
EfficientNet-B0 5.3 35 32 18 
ViT-B/16 86.5 68 55 29 
DeiT-Tiny 5.7 39 34 19 

Although ViT-B/16 yielded the best accuracy, it came at the cost of higher training 
and inference times. DeiT-Tiny emerged as a strong trade-off between performance and 
computational efficiency, especially for edge devices Figure 2. 
Visual Explanation and Model Interpretability: 
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Figure 3 We used Grad-CAM for CNNs and attention rollout maps for ViTs to 
visualize decision focus areas. ViT models produced smoother and more holistic attention 
regions that corresponded better to semantic objects. 

 
Figure 3. Confusion Matrix: ViT-B/16 on NWPU-RESISC45 

ViT attention maps covered entire land parcels or features (e.g., entire rivers or urban 
blocks), while CNNs focused on texture patches, sometimes missing context. 

 
Figure 4. Model Complexity and Traning Time 

Error Analysis: 
A qualitative error inspection found that: 
CNNs frequently misclassified shadows and water bodies (e.g., “lake” as “forest” when 
partially covered). 
ViT errors were often due to ambiguous class boundaries in mixed scenes, especially in 
NWPU. 

In all datasets, classes with fewer training samples (e.g., “Harbor” in NWPU) showed 
reduced accuracy, suggesting the need for class-balancing strategies. 
Discussion: 

This study demonstrated that computational intelligence (CI) techniques—including 
Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and traditional 
machine learning models like Random Forests—significantly enhance the classification 
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accuracy and interpretability of Land Use and Land Cover (LULC) mapping using Sentinel-2 
imagery. Our results confirm the emerging consensus in the literature that deep learning and 
transformer-based approaches are rapidly outperforming classical models in remote sensing 
applications [14]. 

The CNN model exhibited robust performance in capturing local spatial features, 
particularly in complex urban environments where high-resolution detail is critical. This 
finding aligns with the results of [15], who reported a 4–6% improvement in urban 
classification accuracy using deep CNN architectures over pixel-based methods. The ViT 
model further improved upon this by capturing both local and global dependencies in the 
spatial data. Notably, our ViT model achieved a higher F1-score in differentiating between 
spectrally similar classes such as medium and dense residential zones—an area where 
traditional models like Random Forests showed considerable confusion Figure 4. 

ViTs’ ability to process entire image patches with self-attention mechanisms 
contributed to better contextual understanding, consistent with findings by [5][16], who 
demonstrated the effectiveness of ViTs for remote sensing tasks, especially when fine-tuned 
on large-scale datasets. Moreover, the interpretability of ViT attention maps allowed us to 
visualize feature importance, offering a layer of explainability often absent in black-box CNN 
architectures. This feature is essential for decision-making in urban planning and 
environmental monitoring [17]. 

On the other hand, while Random Forests delivered relatively competitive 
performance with less computational overhead, they struggled to distinguish mixed-use land 
parcels due to limitations in modeling spatial correlations. Similar constraints have been 
reported in recent work by [18], who emphasized that tree-based models are more prone to 
overfitting on heterogeneous land cover classes without spatial filtering. 

An important insight from our results is the superior generalization of transformer-
based models when tested on unseen regions. This reinforces the growing evidence that 
transformer architectures, originally developed for natural language processing, offer 
substantial promise in geospatial AI when appropriately adapted [19]. However, their 
computational demand and need for large annotated datasets remain a challenge for 
widespread adoption in low-resource environments. 

Furthermore, this study supports the integration of multiple CI techniques for 
ensemble learning, which has been recommended by recent reviews [20]. By combining the 
strengths of CNNs (local feature extraction), ViTs (global context), and Random Forests 
(interpretability and speed), hybrid models could be developed to optimize both accuracy and 
scalability. 
Conclusion: 

This study successfully demonstrated the comparative strengths of modern 
computational intelligence models—specifically CNNs, Vision Transformers, and Random 
Forests—in LULC classification using Sentinel-2 imagery. Among these, Vision Transformers 
achieved the highest classification performance, especially in regions with complex spectral 
signatures, due to their ability to capture global contextual dependencies. CNNs also 
performed strongly, excelling in spatial feature recognition, while Random Forests, though 
computationally efficient, lagged in distinguishing mixed-use classes. 

The use of explainable AI techniques, such as Grad-CAM for CNNs and attention 
maps for ViTs, added interpretability to the classification process, thereby enhancing trust and 
usability for domain experts. These insights are crucial for applications in environmental 
monitoring, resource planning, and smart urban development. 

This research contributes to the evolving body of knowledge by emphasizing the 
scalability and robustness of transformer-based architectures in remote sensing. It also 
underscores the potential of ensemble strategies that fuse the advantages of different models. 
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Future work should focus on integrating temporal data, transfer learning across regions, and 
real-time processing frameworks to support large-scale, operational LULC mapping. 
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