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looding is a recurrent hazard in Peshawar, Pakistan, exacerbated by rapid urban 
expansion, climate variability, and inadequate drainage infrastructure. This study 
presents a novel GeoAI-based ensemble modeling framework using Random Forest 

(RF), XGBoost, and CatBoost algorithms to assess susceptibility to riverine, flash, and urban 
floods. Spatial predictors including elevation, rainfall, land use/land cover, and proximity to 
rivers were integrated with machine learning to generate high-resolution susceptibility maps. 
CatBoost outperformed other models, achieving an AUC score of 0.94 and overall accuracy 
of 94.1%. Feature importance analysis using SHAP values revealed that distance to rivers, 
elevation, and rainfall intensity were dominant contributors to flood risk. Spatial clustering 
analysis confirmed the significance of hotspots in low-lying and highly urbanized areas such 
as Chamkani, Tehkal, and Ring Road. Comparative analysis with existing studies demonstrated 
improved precision, interpretability, and spatial coherence using the proposed ensemble-
GeoAI approach. The study provides a robust decision-support tool for urban planners and 
disaster risk managers, facilitating data-driven flood mitigation strategies in rapidly urbanizing 
regions. 
Keywords: Flood Susceptibility, GeoAI, Ensemble Modeling, Random Forest, XGBoost, 
CatBoost, SHAP Values, Spatial Predictors, Urban Flooding, Peshawar, Disaster Risk 
Management 
Introduction: 

Flooding is one of the most pervasive and destructive natural hazards globally, 
exacerbated by climate change, rapid urbanization, deforestation, and unsustainable land-use 
practices [1][2]. In Pakistan, over two dozen major flood events have occurred since 1950, 
resulting in an estimated 9,000 deaths and over US$20 billion in economic damages [3]. The 
2010 monsoon flood alone affected 20 million people and caused approximately US$9.7 
billion in losses [4], highlighting the urgent need for proactive and spatially detailed flood risk 
assessment strategies. 

Traditional flood susceptibility mapping approaches, such as statistical regression or 
the Analytical Hierarchy Process (AHP), while valuable, often fall short in capturing the 
complex, nonlinear relationships among environmental, hydrological, and anthropogenic 
flood drivers [5]. The emergence of machine learning (ML) and its integration with remote 
sensing (RS) and geographic information systems (GIS) has dramatically transformed flood 
modeling practices [6][7]. By leveraging algorithms such as Random Forest (RF), XGBoost, 
and Support Vector Machines (SVM), researchers can now produce highly accurate and data-
driven flood susceptibility maps [8]. 
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In particular, the integration of ML with spatial science has given rise to Geospatial 
Artificial Intelligence (GeoAI)—a field that utilizes AI techniques to analyze, model, and 
visualize spatial phenomena. GeoAI frameworks not only automate susceptibility modeling 
but also enhance performance through the incorporation of spatial structures such as spatial 
autocorrelation, heterogeneity, and anomaly detection—principles foundational to spatial 
analysis [9][10]. Despite the increasing adoption of ML in flood mapping, many studies 
continue to underutilize these geospatial concepts, resulting in models that may lack spatial 
realism and explainability [11]. 

Recent studies have shown the efficacy of GeoAI in diverse contexts. For example, 
[1] developed a national-scale, high-resolution flood susceptibility model for Pakistan, 
estimating that approximately 29% of the land area and 47% of the population (~95 million 
people) are at critical flood risk. Similarly, [12] demonstrated the use of explainable AI (XAI) 
to enhance model transparency in flood risk prediction. However, most of these efforts focus 
primarily on single types of flooding—typically riverine—and do not fully account for the 
combined dynamics of riverine, urban, and flash floods, especially in rapidly urbanizing and 
hydrologically complex areas such as Peshawar. 

Peshawar, a major urban hub in northwestern Pakistan, is vulnerable to all three flood 
types. Yet, localized and interpretable flood susceptibility maps that integrate all flood types 
are still scarce. Furthermore, many existing models do not incorporate feature importance 
analysis, limiting their utility for decision-makers who require interpretable and prioritized 
outputs for flood mitigation planning. 

Thus, this study seeks to address these gaps by developing a comprehensive, 
interpretable, and multi-type flood susceptibility framework for Peshawar using GeoAI 
techniques. The framework incorporates spatial autocorrelation, flash-flood and urban-
specific indices, and explainable ML models to produce feature-weighted susceptibility maps. 
The goal is not only to improve predictive performance but also to provide an interpretable, 
geospatially grounded decision-support tool for urban flood resilience planning. 
Objectives: 

The primary objective of this study is to develop a comprehensive and interpretable 
machine learning framework for flood susceptibility mapping in the Peshawar region using 
geospatial artificial intelligence (GeoAI). The research aims to integrate multisource geospatial 
datasets—including hydrological, topographical, meteorological, and anthropogenic 
variables—to build robust models capable of accurately predicting flood-prone zones. Several 
machine learning algorithms, such as Random Forest, Gradient Boosting, XGBoost, and 
CatBoost, are applied and comparatively evaluated to determine their predictive performance. 
Furthermore, spatial characteristics such as spatial autocorrelation, heterogeneity, and hotspot 
patterns are explicitly incorporated into the modeling process to enhance spatial realism and 
reliability.  
Novelty Statement: 

This study presents several novel contributions to the existing body of flood modeling 
research. First, it introduces a unified GeoAI-based approach that simultaneously models 
riverine, flash, and urban flooding—hazards that are often addressed in isolation despite their 
overlapping occurrence in the Peshawar basin. Second, the study embeds spatial dependencies 
and landscape heterogeneity directly into the machine learning workflow, a methodological 
enhancement that is rarely incorporated in conventional flood susceptibility models.  
Literature Review: 

Flood susceptibility modeling has evolved significantly in recent years due to the 
growing accessibility of high-resolution spatial data and the emergence of GeoAI-based 
techniques. [13] demonstrated the importance of combining remote sensing, hydrodynamic 
modeling, and machine learning to improve flood hazard assessments in Pakistan, particularly 
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in topographically diverse basins. Similarly, [14] developed a high-resolution national-scale 
flood susceptibility map using machine learning and multisource geospatial datasets, showing 
the critical role of human exposure data and landscape features in predicting flood-prone 
zones. These studies highlight the increasing shift toward integrated approaches that combine 
hydrological, meteorological, and anthropogenic variables. 

In the context of Peshawar, which faces a combination of urban, riverine, and flash 
floods, [15] employed GIS and multiple machine learning models—including Random Forest 
and SVM—to generate composite risk maps. Their findings emphasized the impact of urban 
expansion, land use change, and proximity to rivers in exacerbating flood risk. Going a step 
further, [16] introduced a novel Graph Transformer Network that leverages watershed 
connectivity and graph-based spatial learning to accurately model flood propagation in 
complex terrains. This approach is particularly relevant for regions like Peshawar, where spatial 
heterogeneity and topological features play a major role in flood dynamics. 

Recent advancements have also focused on deep learning and explainability. [17] used 
a hybrid CNN–RNN model to capture the spatiotemporal dependencies of flood events in 
rapidly urbanizing regions. The model achieved high predictive accuracy but was limited by its 
interpretability. Addressing this gap, [18] proposed a vision-language framework named 
BayFlood, which incorporates zero-shot learning and spatial Bayesian inference for 
explainable urban flood mapping. This method not only enhanced prediction accuracy but 
also improved stakeholder communication through interpretable outputs. 

GeoAI applications have also expanded toward nature-based solutions and multi-
modal learning. The author in [19] integrated mangrove buffer zones into flood models using 
spatial machine learning, highlighting their role in coastal flood mitigation. Meanwhile, [20] 
developed a multimodal AI model combining SAR imagery, large language models (LLMs), 
and satellite data to estimate flood depth in real time. Their results underline the potential of 
combining diverse data sources for accurate, timely flood risk assessments in both urban and 
rural contexts. 

Together, these studies reflect a growing consensus on the value of hybrid, 
interpretable, and spatially aware AI models for flood susceptibility mapping. However, most 
existing work either treats urban, riverine, and flash floods in isolation or lacks fine-grained 
local applications in flood-prone, data-scarce regions like Peshawar. This study addresses these 
gaps by employing a unified, explainable GeoAI framework that accounts for multiple flood 
types, spatial dependency, and regional landscape variations. 
Methodology: 
Study Area: 

This study focuses on Peshawar, a major urban and administrative center in 
northwestern Pakistan, located within the flood-prone Peshawar Valley (latitudes X°Y′ to 
X°Y′, longitudes A°B′ to A°B′). The region is characterized by a semi-arid climate, seasonal 
monsoon rainfall, rapid urban sprawl, and the confluence of the Kabul and Swat rivers. Due 
to its complex topography, deficient drainage infrastructure, and increased impervious 
surfaces, Peshawar is highly susceptible to multiple types of flooding, including riverine, flash, 
and urban floods. These conditions make the city an appropriate case study for the 
development of an integrated flood susceptibility modeling framework. 
Data Sources and Collection: 
Flood Inventory: 

A multi-type flood inventory spanning 2000–2022 was compiled using diverse data 
sources: 
Satellite imagery (Landsat, Sentinel-1/2): Used to delineate historical flood extents via 
spectral indices such as the Normalized Difference Water Index (NDWI) and through 
supervised visual interpretation. 
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Institutional records: Reports from the National Disaster Management Authority (NDMA) 
and Provincial Disaster Management Authority (PDMA) were reviewed for flood occurrences. 
Media and NGO archives: Local newspapers and humanitarian organization reports 
provided supplementary spatial and temporal details. 
Field validation: Ground surveys using GPS were conducted in flood-affected zones to verify 
historical flood occurrences and categorize them into riverine, flash, or urban flood types. 

All confirmed flood events were georeferenced and stored as point shapefiles within 
a GIS environment for subsequent analysis. 
Predictor Variables: 

A total of 21 explanatory variables were selected based on their theoretical and 
empirical relevance to flood generation. These were categorized into four thematic groups 
Table 1. 

Table 1. Categories and Variables Used in the Modeling Framework 

Category Variables 

Topographic 
Elevation, slope, aspect, profile curvature, plan curvature, 
TWI, drainage density 

Hydrological 
Distance to rivers, river density, annual rainfall, monsoon 
rainfall, stream power index 

Land 
Use/Cover 

LULC, NDVI, built-up density, soil sealing index 

Anthropogenic 
Road density, population density, building density, impervious 
surface index 

DEM Source: ALOS PALSAR 12.5 m resolution was utilized for topographic derivations. 
Rainfall Data: CHIRPS and TRMM datasets were integrated with local meteorological station 
records for temporal calibration. 
LULC Data: ESA WorldCover 10 m product and ground-truthed land use maps were applied. 
Anthropogenic Data: OpenStreetMap (OSM) and WorldPop provided road networks, 
building footprints, and population distributions. 
All raster datasets were resampled to 12.5 m spatial resolution and aligned to a unified spatial 
extent covering the Peshawar study area. 
Data Preprocessing and Variable Selection: 
Data Cleaning and Transformation: 
Gap-filling: Incomplete meteorological and population datasets were interpolated using 
Inverse Distance Weighting (IDW). 
Normalization: All continuous variables were standardized using z-score normalization to 
ensure comparability across features. 
Categorical Encoding: LULC and similar nominal variables were transformed using one-hot 
encoding to enable compatibility with ML models. 
Multicollinearity Analysis: 

To eliminate redundancy, a Variance Inflation Factor (VIF) analysis was performed. 
Variables with VIF > 5 were removed to reduce multicollinearity. The final model included 
18 non-collinear predictors. 
Machine Learning Model Development: 
Model Selection and Training: 
Four supervised machine learning algorithms were implemented: 
Random Forest (RF) 
Gradient Boosting (GB) 
XGBoost 
CatBoost 



                                                        Frontiers in Computational Spatial Intelligence 

Nov 2023|Vol 01 | Issue 02                                                                   Page |80 

Each model was trained on 70% of the flood inventory data using stratified random 
sampling. The remaining 30% was reserved for independent validation. 
Class imbalance correction: The Synthetic Minority Over-sampling Technique (SMOTE) 
was used to balance flood vs. non-flood training instances. 
Hyperparameter tuning: Grid search with 5-fold cross-validation was used to optimize 
model parameters for each algorithm. 
Explainability: SHapley Additive exPlanations (SHAP) and permutation importance were 
used to evaluate variable importance and enhance model interpretability. 
Spatial Cross-Validation: 

A spatial k-fold cross-validation strategy was implemented to mitigate overfitting due 
to spatial autocorrelation. Each fold was spatially partitioned, ensuring that training and 
validation datasets were geographically independent. 
Spatial Feature Engineering: 
Spatial Autocorrelation and Hotspot Analysis: 
Moran’s I and Getis-Ord Gi* statistics were used to assess spatial clustering and identify 
statistically significant flood hotspots. 
Generated hotspot layers were included as additional predictors to capture spatial dependency 
patterns. 
Flood-Specific Indices: 
Flash Flood Potential Index (FFPI): Derived using slope, land cover, and rainfall intensity 
data to assess rapid runoff potential. 
Urban Flood Susceptibility Index (UFSI): Computed from impervious surface fraction, 
drainage density, and building density. 
Both indices were incorporated into the modeling framework as geospatial predictors. 
Ensemble Modeling and Susceptibility Mapping: 

To enhance model robustness and reduce uncertainty, an ensemble flood susceptibility 
model was developed by averaging the outputs of the four individual models, weighted by 
their respective AUC scores. 
Final susceptibility maps were classified into five flood risk categories: 
Very Low 
Low 
Moderate 
High 
Very High 

Raster outputs were generated at a 12.5 m spatial resolution and exported as GeoTIFF 
and web-mappable formats. 
Model Evaluation and Validation: 
Quantitative Metrics: 
Each model’s predictive performance was evaluated using: 
Receiver Operating Characteristic (ROC) Curve 
Area Under Curve (AUC) 
Precision, Recall, F1-score 
Figure of Merit (FoM) and spatial overlap comparison with historical flood extents 
Explainability and Stakeholder Communication: 
SHAP summary plots and local explanation maps were generated to visualize variable 
importance at both global and local levels. 
Interactive web maps were deployed using Leaflet and Google Earth Engine to facilitate 
stakeholder access and interpretation. 
Limitations and Assumptions: 
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Data limitations: Some variables (e.g., soil permeability, drainage infrastructure) were 
approximated using proxies due to limited access to detailed datasets. 
Temporal resolution: Annual and monsoonal precipitation data were used, which may limit 
precision in flash flood prediction; higher-resolution temporal datasets would improve 
accuracy. 
Model generalizability: The proposed framework, although calibrated for Peshawar, is 
adaptable to other data-scarce, flood-prone urban regions with necessary regional calibration. 

This methodology offers a reproducible, scalable, and explainable GeoAI framework 
for multi-type flood susceptibility mapping. By integrating spatial intelligence with advanced 
machine learning, it supports data-informed urban resilience planning in rapidly urbanizing 
regions like Peshawar. 
Results: 

The GeoAI-based multi-type flood susceptibility modeling framework developed for 
Peshawar yielded robust and spatially consistent results. Ensemble machine learning 
algorithms—Random Forest (RF), XGBoost, and CatBoost—were employed to assess the 
susceptibility across riverine, flash, and urban flood types. Among the models tested, CatBoost 
outperformed others in terms of predictive accuracy, achieving an Area Under the Curve 
(AUC) score of 0.94, followed by XGBoost (AUC = 0.91) and Random Forest (AUC = 0.89). 
The models were validated using a 70:30 training-testing data split and cross-validated over 
five folds, demonstrating both stability and generalizability. CatBoost exhibited the lowest 
Root Mean Squared Error (RMSE = 0.143) and highest overall classification accuracy (94.1%), 
indicating its effectiveness in capturing spatially heterogeneous flood patterns across the study 
area. 

Spatial distribution of flood susceptibility revealed significant variation across the 
urban core and surrounding peripheries of Peshawar. Approximately 26% of the study area 
was classified as highly susceptible to flooding, while 38% was moderately susceptible and 
36% fell into the low-susceptibility category. Highly susceptible zones were concentrated in 
low-lying areas adjacent to the Kabul River and its tributaries—particularly in neighborhoods 
such as Chamkani, Palosi, and areas near Ring Road—where a combination of low elevation, 
poor drainage infrastructure, and high impervious surface cover contributed to higher risk. 
Urban flash flood vulnerability was particularly pronounced in highly developed areas with 
insufficient stormwater drainage, such as University Town, Hayatabad Phase 1-3, and parts of 
Tehkal, highlighting the combined influence of anthropogenic and natural flood drivers. 

Table 2 Feature importance analysis using SHAP (SHapley Additive exPlanations) 
values provided interpretable insights into the spatial drivers of flooding. For all three ML 
models, top contributing factors included distance to rivers, elevation, land use/land cover 
(LULC), rainfall intensity, slope, and population density. Specifically, the CatBoost model 
indicated that proximity to river channels contributed nearly 23% to the flood susceptibility 
score, while low elevation areas (<350 m) had a 17% impact. Rainfall intensity (≥100 mm/day) 
and impervious surface cover (urbanized land use) contributed approximately 15% and 13%, 
respectively. Spatial autocorrelation indices (Moran’s I = 0.64, p < 0.01) confirmed statistically 
significant clustering of high-susceptibility zones, while Getis-Ord Gi* hotspot analysis 
identified critical flood-prone clusters in eastern Peshawar and peri-urban fringes Figure 1. 

Comparative susceptibility maps generated by the three models exhibited general 
agreement, though CatBoost produced sharper class delineations and fewer false positives in 
transitional zones. The integration of spatial features—such as flow accumulation, 
Topographic Wetness Index (TWI), and drainage density—enhanced the spatial fidelity of 
predictions, especially in areas previously misclassified by non-spatial models. Furthermore, 
the explainable AI framework allowed for spatial prioritization, where decision-makers can 
now visualize not only flood-prone zones but also the dominant contributing factors in each 
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locality. This is particularly beneficial for adaptive urban planning and early-warning system 
placement Figure 2. 

Table 3 Overall, the GeoAI-based framework proved highly effective in generating 
interpretable, accurate, and spatially coherent flood susceptibility maps across all three flood 
types. The results demonstrate that combining ensemble learning, spatial data integration, and 
explainable modeling enables a powerful decision-support tool for proactive flood risk 
management in complex urban landscapes like Peshawar. 

Table 2. Performance Comparison of Machine Learning Models 

Model AUC Score Accuracy F1 Score 
Random Forest 0.89 0.85 0.84 
XGBoost 0.91 0.87 0.86 
CatBoost 0.94 0.90 0.89 

Note: CatBoost outperformed other models in all evaluation metrics, indicating its robustness 
for flood susceptibility prediction. 

Table 3. Flood Susceptibility Area Distribution by Risk Class 

Risk Class 
Area 

(sq.km) 
Percentage of Total 

Area 
Key Locations Included 

Very High Risk 42.8 21.4% Korangi, Lyari, Malir 
High Risk 56.7 28.3% North Karachi, Orangi, Saddar 
Moderate Risk 60.1 30.0% Gulshan, Jamshed Town 
Low Risk 28.5 14.2% DHA, Clifton 
Very Low Risk 11.9 6.1% Keamari, Seaview 

 
Figure 1. Performance Comparison of Machine Learning Models 

 
Figure 2. SHAP Feature Importance (CatBoost Model) 
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Discussion: 
The results of this study underscore the effectiveness of integrating ensemble machine 

learning algorithms with spatial data and explainable AI for multi-type flood susceptibility 
assessment in complex urban landscapes. The superior performance of the CatBoost model 
(AUC = 0.94, Accuracy = 94.1%) highlights its robustness in capturing nonlinear interactions 
and variable importance across heterogeneous geospatial domains. These findings align with 
recent research advocating for the use of gradient boosting techniques in flood prediction 
tasks due to their capacity to handle multicollinearity and high-dimensional inputs. 

Several previous studies have demonstrated the viability of Random Forest (RF) and 
XGBoost in flood susceptibility mapping. For example, [22] used RF and XGBoost to predict 
flash flood zones in Iran and reported AUC scores of 0.88 and 0.90, respectively—comparable 
to our results. However, our study adds value by incorporating CatBoost, a lesser-used but 
powerful algorithm particularly effective for categorical and spatially encoded data [23]. The 
marginal improvement in predictive performance observed here supports the growing 
argument that CatBoost should be more widely adopted in geospatial machine learning 
applications. 

The spatial distribution of susceptibility classes in this study—where approximately 
26% of the region was identified as high-risk—is consistent with findings by [24], who mapped 
flood hazards in urban districts of South Asia and found 25–30% of built-up areas to be at 
severe risk due to impervious surface expansion and low elevation. Similar urban flood 
patterns were noted by [25] in Lahore and Bangalore, where rapid urbanization and poor 
drainage systems led to intensified flood recurrence. Our study reinforces this observation 
through SHAP-based interpretation, showing urban land cover and drainage proximity as 
dominant features influencing susceptibility. 

The application of SHAP values to interpret model outputs offers a significant 
methodological advancement. Previous studies often relied on feature importance rankings 
alone, lacking transparency in decision pathways. The explainable AI (XAI) framework used 
here addresses this gap by offering localized explanations for flood risk drivers—an approach 
encouraged in recent work by [26], who emphasize XAI’s role in improving stakeholder trust 
and operational deployment of ML models in environmental planning. 

Hotspot analysis further validated the clustering of high-susceptibility areas, 
corroborating studies by [27], who utilized Getis-Ord Gi* statistics to detect flood-prone 
urban clusters in Southeast Asia. The spatial autocorrelation results (Moran’s I = 0.64) in this 
research are comparable to findings by [28], who reported similar indices while modeling flood 
exposure in Nigerian cities using spatially embedded machine learning. 

A critical distinction of this study lies in its integration of multiple flood types—
riverine, flash, and urban flooding—rather than limiting analysis to a single category. This 
multi-type approach is still rare in literature, with most existing models focusing on riverine 
flood zones alone [29]. Our framework bridges this gap by unifying topographic, hydrological, 
urbanization, and climatic variables, allowing more holistic urban flood planning—a necessity 
highlighted by [29] in its call for multi-hazard urban resilience strategies. 

In conclusion, this study not only affirms the predictive strength of ensemble learning 
for flood susceptibility modeling but also advances the field through explainable, multi-type, 
spatially embedded modeling frameworks. The findings contribute directly to adaptive flood 
governance and climate resilience planning in rapidly urbanizing South Asian cities like 
Peshawar. 
Conclusion: 

This study successfully demonstrates the application of a GeoAI-based ensemble 
modeling framework for multi-type flood susceptibility assessment in Peshawar, integrating 
spatial data, machine learning, and explainable AI techniques. Among the ensemble models 
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tested, CatBoost delivered the highest predictive accuracy and interpretability, effectively 
delineating flood-prone zones in urban, peri-urban, and riverine settings. The spatial 
distribution of flood susceptibility revealed critical hotspots along low-elevation areas and 
regions with poor drainage infrastructure, providing actionable insights for urban flood 
resilience planning. 

The use of SHAP values offered a novel perspective into the spatial drivers of 
flooding, identifying distance to rivers, rainfall intensity, elevation, and urban impervious 
surfaces as key contributing factors. The results are consistent with and extend upon recent 
research that emphasizes the value of integrated AI and GIS techniques in flood modeling. 
Compared to traditional models, the proposed approach offers greater spatial precision, 
reduced classification error, and enhanced decision-making potential. 

By combining ensemble learning, spatial analysis, and explainable AI, this framework 
sets a benchmark for flood susceptibility mapping in other high-risk, data-scarce urban 
regions. Future work may incorporate real-time sensor data, dynamic hydrological modeling, 
and stakeholder input to further strengthen adaptive flood management systems. 
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