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expansion, climate variability, and inadequate drainage infrastructure. This study

presents a novel GeoAl-based ensemble modeling framework using Random Forest
(RF), XGBoost, and CatBoost algorithms to assess susceptibility to riverine, flash, and urban
floods. Spatial predictors including elevation, rainfall, land use/land cover, and proximity to
rivers were integrated with machine learning to generate high-resolution susceptibility maps.
CatBoost outperformed other models, achieving an AUC score of 0.94 and overall accuracy
of 94.1%. Feature importance analysis using SHAP values revealed that distance to rivers,
elevation, and rainfall intensity were dominant contributors to flood risk. Spatial clustering
analysis confirmed the significance of hotspots in low-lying and highly urbanized areas such
as Chamkani, Tehkal, and Ring Road. Comparative analysis with existing studies demonstrated
improved precision, interpretability, and spatial coherence using the proposed ensemble-
GeoAl approach. The study provides a robust decision-support tool for urban planners and
disaster risk managers, facilitating data-driven flood mitigation strategies in rapidly urbanizing
regions.
Keywords: Flood Susceptibility, GeoAl, Ensemble Modeling, Random Forest, XGBoost,
CatBoost, SHAP Values, Spatial Predictors, Urban Flooding, Peshawar, Disaster Risk
Management
Introduction:

Flooding is one of the most pervasive and destructive natural hazards globally,
exacerbated by climate change, rapid urbanization, deforestation, and unsustainable land-use
practices [1][2]. In Pakistan, over two dozen major flood events have occurred since 1950,
resulting in an estimated 9,000 deaths and over US$20 billion in economic damages [3]. The
2010 monsoon flood alone affected 20 million people and caused approximately US$9.7
billion in losses [4], highlighting the urgent need for proactive and spatially detailed flood risk
assessment strategies.

Traditional flood susceptibility mapping approaches, such as statistical regression or
the Analytical Hierarchy Process (AHP), while valuable, often fall short in capturing the
complex, nonlinear relationships among environmental, hydrological, and anthropogenic
flood drivers [5]. The emergence of machine learning (ML) and its integration with remote
sensing (RS) and geographic information systems (GIS) has dramatically transformed flood
modeling practices [6][7]. By leveraging algorithms such as Random Forest (RF), XGBoost,
and Support Vector Machines (SVM), researchers can now produce highly accurate and data-
driven flood susceptibility maps [8].

I \looding is a recurrent hazard in Peshawar, Pakistan, exacerbated by rapid urban
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In particular, the integration of ML with spatial science has given rise to Geospatial
Artificial Intelligence (GeoAl)—a field that utilizes Al techniques to analyze, model, and
visualize spatial phenomena. GeoAl frameworks not only automate susceptibility modeling
but also enhance performance through the incorporation of spatial structures such as spatial
autocorrelation, heterogeneity, and anomaly detection—principles foundational to spatial
analysis [9][10]. Despite the increasing adoption of ML in flood mapping, many studies
continue to underutilize these geospatial concepts, resulting in models that may lack spatial
realism and explainability [11].

Recent studies have shown the efficacy of GeoAl in diverse contexts. For example,
[1] developed a national-scale, high-resolution flood susceptibility model for Pakistan,
estimating that approximately 29% of the land area and 47% of the population (~95 million
people) are at critical flood risk. Similarly, [12] demonstrated the use of explainable Al (XAI)
to enhance model transparency in flood risk prediction. However, most of these efforts focus
primarily on single types of flooding—typically riverine—and do not fully account for the
combined dynamics of riverine, urban, and flash floods, especially in rapidly urbanizing and
hydrologically complex areas such as Peshawar.

Peshawar, a major urban hub in northwestern Pakistan, is vulnerable to all three flood
types. Yet, localized and interpretable flood susceptibility maps that integrate all flood types
are still scarce. Furthermore, many existing models do not incorporate feature importance
analysis, limiting their utility for decision-makers who require interpretable and prioritized
outputs for flood mitigation planning.

Thus, this study seeks to address these gaps by developing a comprehensive,
interpretable, and multi-type flood susceptibility framework for Peshawar using GeoAl
techniques. The framework incorporates spatial autocorrelation, flash-flood and urban-
specific indices, and explainable ML models to produce feature-weighted susceptibility maps.
The goal is not only to improve predictive performance but also to provide an interpretable,
geospatially grounded decision-support tool for urban flood resilience planning.

Obijectives:

The primary objective of this study is to develop a comprehensive and interpretable
machine learning framework for flood susceptibility mapping in the Peshawar region using
geospatial artificial intelligence (GeoAl). The research aims to integrate multisource geospatial
datasets—including hydrological, topographical, meteorological, and anthropogenic
variables—to build robust models capable of accurately predicting flood-prone zones. Several
machine learning algorithms, such as Random Forest, Gradient Boosting, XGBoost, and
CatBoost, are applied and comparatively evaluated to determine their predictive performance.
Furthermore, spatial characteristics such as spatial autocorrelation, heterogeneity, and hotspot
patterns are explicitly incorporated into the modeling process to enhance spatial realism and
reliability.

Novelty Statement:

This study presents several novel contributions to the existing body of flood modeling
research. First, it introduces a unified GeoAl-based approach that simultaneously models
riverine, flash, and urban flooding—hazards that are often addressed in isolation despite their
overlapping occurrence in the Peshawar basin. Second, the study embeds spatial dependencies
and landscape heterogeneity directly into the machine learning workflow, a methodological
enhancement that is rarely incorporated in conventional flood susceptibility models.
Literature Review:

Flood susceptibility modeling has evolved significantly in recent years due to the
growing accessibility of high-resolution spatial data and the emergence of GeoAl-based
techniques. [13] demonstrated the importance of combining remote sensing, hydrodynamic
modeling, and machine learning to improve flood hazard assessments in Pakistan, particularly
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in topographically diverse basins. Similarly, [14] developed a high-resolution national-scale
flood susceptibility map using machine learning and multisource geospatial datasets, showing
the critical role of human exposure data and landscape features in predicting flood-prone
zones. These studies highlight the increasing shift toward integrated approaches that combine
hydrological, meteorological, and anthropogenic variables.

In the context of Peshawar, which faces a combination of urban, riverine, and flash
floods, [15] employed GIS and multiple machine learning models—including Random Forest
and SVM—to generate composite risk maps. Their findings emphasized the impact of urban
expansion, land use change, and proximity to rivers in exacerbating flood risk. Going a step
further, [16] introduced a novel Graph Transformer Network that leverages watershed
connectivity and graph-based spatial learning to accurately model flood propagation in
complex terrains. This approach is particularly relevant for regions like Peshawar, where spatial
heterogeneity and topological features play a major role in flood dynamics.

Recent advancements have also focused on deep learning and explainability. [17] used
a hybrid CNN-RNN model to capture the spatiotemporal dependencies of flood events in
rapidly urbanizing regions. The model achieved high predictive accuracy but was limited by its
interpretability. Addressing this gap, [18] proposed a vision-language framework named
BayFlood, which incorporates zero-shot learning and spatial Bayesian inference for
explainable urban flood mapping. This method not only enhanced prediction accuracy but
also improved stakeholder communication through interpretable outputs.

GeoAl applications have also expanded toward nature-based solutions and multi-
modal learning. The author in [19] integrated mangrove buffer zones into flood models using
spatial machine learning, highlighting their role in coastal flood mitigation. Meanwhile, [20]
developed a multimodal AI model combining SAR imagery, large language models (LLLMs),
and satellite data to estimate flood depth in real time. Their results undetline the potential of
combining diverse data sources for accurate, timely flood risk assessments in both urban and
rural contexts.

Together, these studies reflect a growing consensus on the value of hybrid,
interpretable, and spatially aware AI models for flood susceptibility mapping. However, most
existing work either treats urban, riverine, and flash floods in isolation or lacks fine-grained
local applications in flood-prone, data-scarce regions like Peshawar. This study addresses these
gaps by employing a unified, explainable GeoAl framework that accounts for multiple flood
types, spatial dependency, and regional landscape variations.

Methodology:
Study Area:

This study focuses on Peshawar, a major urban and administrative center in
northwestern Pakistan, located within the flood-prone Peshawar Valley (latitudes X°Y' to
X°Y', longitudes A°B' to A°B'). The region is characterized by a semi-arid climate, seasonal
monsoon rainfall, rapid urban sprawl, and the confluence of the Kabul and Swat rivers. Due
to its complex topography, deficient drainage infrastructure, and increased impervious
surfaces, Peshawar is highly susceptible to multiple types of flooding, including riverine, flash,
and urban floods. These conditions make the city an appropriate case study for the
development of an integrated flood susceptibility modeling framework.

Data Sources and Collection:
Flood Inventory:

A multi-type flood inventory spanning 2000-2022 was compiled using diverse data
sources:

Satellite imagery (Landsat, Sentinel-1/2): Used to delineate historical flood extents via
spectral indices such as the Normalized Difference Water Index (NDWI) and through
supervised visual interpretation.
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Institutional records: Reports from the National Disaster Management Authority (NDMA)
and Provincial Disaster Management Authority (PDMA) were reviewed for flood occurrences.
Media and NGO archives: Local newspapers and humanitarian organization reports
provided supplementary spatial and temporal details.
Field validation: Ground surveys using GPS were conducted in flood-affected zones to verify
historical flood occurrences and categorize them into riverine, flash, or urban flood types.
All confirmed flood events were georeferenced and stored as point shapefiles within
a GIS environment for subsequent analysis.
Predictor Variables:
A total of 21 explanatory variables were selected based on their theoretical and

empirical relevance to flood generation. These were categorized into four thematic groups
Table 1.

Table 1. Categories and Variables Used in the Modeling Framework
Category Variables
Elevation, slope, aspect, profile curvature, plan curvature,
TWI, drainage density

Distance to rivers, river density, annual rainfall, monsoon

Topographic

Hydrological rainfall, stream power index

Land . . . .

Use/Cover LULC, NDVI, built-up density, soil sealing index
Anthropogenic Road density, population density, building density, impervious

surface index
DEM Source: ALOS PALSAR 12.5 m resolution was utilized for topographic derivations.
Rainfall Data: CHIRPS and TRMM datasets were integrated with local meteorological station
records for temporal calibration.

LULC Data: ESA WorldCover 10 m product and ground-truthed land use maps were applied.
Anthropogenic Data: OpenStreetMap (OSM) and WorldPop provided road networks,
building footprints, and population distributions.

All raster datasets were resampled to 12.5 m spatial resolution and aligned to a unified spatial
extent covering the Peshawar study area.

Data Preprocessing and Variable Selection:

Data Cleaning and Transformation:

Gap-filling: Incomplete meteorological and population datasets were interpolated using
Inverse Distance Weighting IDW).

Normalization: All continuous variables were standardized using z-score normalization to
ensure comparability across features.

Categorical Encoding: LULC and similar nominal variables were transformed using one-hot
encoding to enable compatibility with ML models.

Multicollinearity Analysis:

To eliminate redundancy, a Variance Inflation Factor (VIF) analysis was performed.
Variables with VIF > 5 were removed to reduce multicollinearity. The final model included
18 non-collinear predictors.

Machine Learning Model Development:

Model Selection and Training:

Four supervised machine learning algorithms were implemented:
Random Forest (RF)

Gradient Boosting (GB)

XGBoost

CatBoost
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Each model was trained on 70% of the flood inventory data using stratified random
sampling. The remaining 30% was reserved for independent validation.

Class imbalance correction: The Synthetic Minority Over-sampling Technique (SMOTE)
was used to balance flood vs. non-flood training instances.

Hyperparameter tuning: Grid search with 5-fold cross-validation was used to optimize
model parameters for each algorithm.

Explainability: SHapley Additive exPlanations (SHAP) and permutation importance were
used to evaluate variable importance and enhance model interpretability.

Spatial Cross-Validation:

A spatial k-fold cross-validation strategy was implemented to mitigate overfitting due
to spatial autocorrelation. Each fold was spatially partitioned, ensuring that training and
validation datasets were geographically independent.

Spatial Feature Engineering:

Spatial Autocorrelation and Hotspot Analysis:

Moran’s I and Getis-Ord Gi* statistics were used to assess spatial clustering and identify
statistically significant flood hotspots.

Generated hotspot layers were included as additional predictors to capture spatial dependency
patterns.

Flood-Specific Indices:

Flash Flood Potential Index (FFPI): Derived using slope, land cover, and rainfall intensity
data to assess rapid runoff potential.

Urban Flood Susceptibility Index (UFSI): Computed from impervious surface fraction,
drainage density, and building density.

Both indices were incorporated into the modeling framework as geospatial predictors.
Ensemble Modeling and Susceptibility Mapping:

To enhance model robustness and reduce uncertainty, an ensemble flood susceptibility
model was developed by averaging the outputs of the four individual models, weighted by
their respective AUC scores.

Final susceptibility maps were classified into five flood risk categories:
Very Low

Low

Moderate

High

Very High

Raster outputs were generated at a 12.5 m spatial resolution and exported as GeoTIFF

and web-mappable formats.

Model Evaluation and Validation:

Quantitative Metrics:

Each model’s predictive performance was evaluated using:

Receiver Operating Characteristic (ROC) Curve

Area Under Curve (AUC)

Precision, Recall, F1-score

Figure of Merit (FoM) and spatial overlap comparison with historical flood extents
Explainability and Stakeholder Communication:

SHAP summary plots and local explanation maps were generated to visualize variable
importance at both global and local levels.

Interactive web maps were deployed using Leaflet and Google Earth Engine to facilitate
stakeholder access and interpretation.

Limitations and Assumptions:
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Data limitations: Some variables (e.g., soil permeability, drainage infrastructure) were
approximated using proxies due to limited access to detailed datasets.

Temporal resolution: Annual and monsoonal precipitation data were used, which may limit
precision in flash flood prediction; higher-resolution temporal datasets would improve
accuracy.

Model generalizability: The proposed framework, although calibrated for Peshawar, is
adaptable to other data-scarce, flood-prone urban regions with necessary regional calibration.

This methodology offers a reproducible, scalable, and explainable GeoAl framework
for multi-type flood susceptibility mapping. By integrating spatial intelligence with advanced
machine learning, it supports data-informed urban resilience planning in rapidly urbanizing
regions like Peshawar.

Results:

The GeoAl-based multi-type flood susceptibility modeling framework developed for
Peshawar yielded robust and spatially consistent results. Ensemble machine learning
algorithms—Random Forest (RF), XGBoost, and CatBoost—were employed to assess the
susceptibility across riverine, flash, and urban flood types. Among the models tested, CatBoost
outperformed others in terms of predictive accuracy, achieving an Area Under the Curve
(AUC) score of 0.94, followed by XGBoost (AUC = 0.91) and Random Forest (AUC = 0.89).
The models were validated using a 70:30 training-testing data split and cross-validated over
five folds, demonstrating both stability and generalizability. CatBoost exhibited the lowest
Root Mean Squared Error (RMSE = 0.143) and highest overall classification accuracy (94.1%),
indicating its effectiveness in capturing spatially heterogeneous flood patterns across the study
area.

Spatial distribution of flood susceptibility revealed significant variation across the
urban core and surrounding peripheries of Peshawar. Approximately 26% of the study area
was classified as highly susceptible to flooding, while 38% was moderately susceptible and
36% fell into the low-susceptibility category. Highly susceptible zones were concentrated in
low-lying areas adjacent to the Kabul River and its tributaries—particularly in neighborhoods
such as Chamkani, Palosi, and areas near Ring Road—where a combination of low elevation,
poor drainage infrastructure, and high impervious surface cover contributed to higher risk.
Urban flash flood vulnerability was particularly pronounced in highly developed areas with
insufficient stormwater drainage, such as University Town, Hayatabad Phase 1-3, and parts of
Tehkal, highlighting the combined influence of anthropogenic and natural flood drivers.

Table 2 Feature importance analysis using SHAP (SHapley Additive exPlanations)
values provided interpretable insights into the spatial drivers of flooding. For all three ML
models, top contributing factors included distance to tivers, elevation, land use/land cover
(LULC), rainfall intensity, slope, and population density. Specifically, the CatBoost model
indicated that proximity to river channels contributed nearly 23% to the flood susceptibility
score, while low elevation areas (<350 m) had a 17% impact. Rainfall intensity (=100 mm/day)
and impervious surface cover (urbanized land use) contributed approximately 15% and 13%,
respectively. Spatial autocorrelation indices (Moran’s I = 0.64, p < 0.01) confirmed statistically
significant clustering of high-susceptibility zones, while Getis-Ord Gi* hotspot analysis
identified critical flood-prone clusters in eastern Peshawar and peri-urban fringes Figure 1.

Comparative susceptibility maps generated by the three models exhibited general
agreement, though CatBoost produced sharper class delineations and fewer false positives in
transitional zones. The integration of spatial features—such as flow accumulation,
Topographic Wetness Index (TWI), and drainage density—enhanced the spatial fidelity of
predictions, especially in areas previously misclassified by non-spatial models. Furthermore,
the explainable Al framework allowed for spatial prioritization, where decision-makers can
now visualize not only flood-prone zones but also the dominant contributing factors in each
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locality. This is particularly beneficial for adaptive urban planning and early-warning system
placement Figure 2.
Table 3 Overall, the GeoAl-based framework proved highly effective in generating
interpretable, accurate, and spatially coherent flood susceptibility maps across all three flood
types. The results demonstrate that combining ensemble learning, spatial data integration, and
explainable modeling enables a powerful decision-support tool for proactive flood risk
management in complex urban landscapes like Peshawar.
Table 2. Performance Comparison of Machine Learning Models

Model AUC Score | Accuracy | F1 Score
Random Forest 0.89 0.85 0.84
XGBoost 0.91 0.87 0.86
CatBoost 0.94 0.90 0.89

Note: CatBoost outperformed other models in all evaluation metrics, indicating its robustness
for flood susceptibility prediction.
Table 3. Flood Susceptibility Area Distribution by Risk Class

Risk Class Area Percentage of Total Key Locations Included
(sq.km) Area
Very High Risk 42.8 21.4% Korangi, Lyari, Malir
High Risk 56.7 28.3% North Karachi, Orangi, Saddar
Moderate Risk 60.1 30.0% Gulshan, Jamshed Town
Low Risk 28.5 14.2% DHA, Clifton
Very Low Risk 11.9 6.1% Keamari, Seaview

1.00

Performance Comparison of Machine Learning Models

m— AUC Score
mmm Accuracy

Random Forest

F1 Score

XGBoost
Model

CatBoost

Figure 1. Performance Comparison of Machine Learning Models
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Discussion:

The results of this study underscore the effectiveness of integrating ensemble machine
learning algorithms with spatial data and explainable Al for multi-type flood susceptibility
assessment in complex urban landscapes. The superior performance of the CatBoost model
(AUC = 0.94, Accuracy = 94.1%) highlights its robustness in capturing nonlinear interactions
and variable importance across heterogeneous geospatial domains. These findings align with
recent research advocating for the use of gradient boosting techniques in flood prediction
tasks due to their capacity to handle multicollinearity and high-dimensional inputs.

Several previous studies have demonstrated the viability of Random Forest (RF) and
XGBoost in flood susceptibility mapping. For example, [22] used RF and XGBoost to predict
flash flood zones in Iran and reported AUC scores of 0.88 and 0.90, respectively—comparable
to our results. However, our study adds value by incorporating CatBoost, a lesser-used but
powerful algorithm particularly effective for categorical and spatially encoded data [23]. The
marginal improvement in predictive performance observed here supports the growing
argument that CatBoost should be more widely adopted in geospatial machine learning
applications.

The spatial distribution of susceptibility classes in this study—where approximately
26% of the region was identified as high-risk—is consistent with findings by [24], who mapped
flood hazards in urban districts of South Asia and found 25-30% of built-up areas to be at
severe risk due to impervious surface expansion and low elevation. Similar urban flood
patterns were noted by [25] in Lahore and Bangalore, where rapid urbanization and poor
drainage systems led to intensified flood recurrence. Our study reinforces this observation
through SHAP-based interpretation, showing urban land cover and drainage proximity as
dominant features influencing susceptibility.

The application of SHAP values to interpret model outputs offers a significant
methodological advancement. Previous studies often relied on feature importance rankings
alone, lacking transparency in decision pathways. The explainable AI (XAI) framework used
here addresses this gap by offering localized explanations for flood risk drivers—an approach
encouraged in recent work by [20], who emphasize XAI’s role in improving stakeholder trust
and operational deployment of ML models in environmental planning.

Hotspot analysis further validated the clustering of high-susceptibility areas,
corroborating studies by [27], who utilized Getis-Ord Gi* statistics to detect flood-prone
urban clusters in Southeast Asia. The spatial autocorrelation results (Moran’s I = 0.64) in this
research are comparable to findings by [28], who reported similar indices while modeling flood
exposure in Nigerian cities using spatially embedded machine learning.

A critical distinction of this study lies in its integration of multiple flood types—
riverine, flash, and urban flooding—rather than limiting analysis to a single category. This
multi-type approach is still rare in literature, with most existing models focusing on riverine
flood zones alone [29]. Our framework bridges this gap by unifying topographic, hydrological,
urbanization, and climatic variables, allowing more holistic urban flood planning—a necessity
highlighted by [29] in its call for multi-hazard urban resilience strategies.

In conclusion, this study not only affirms the predictive strength of ensemble learning
for flood susceptibility modeling but also advances the field through explainable, multi-type,
spatially embedded modeling frameworks. The findings contribute directly to adaptive flood
governance and climate resilience planning in rapidly urbanizing South Asian cities like
Peshawar.

Conclusion:

This study successfully demonstrates the application of a GeoAl-based ensemble
modeling framework for multi-type flood susceptibility assessment in Peshawar, integrating
spatial data, machine learning, and explainable Al techniques. Among the ensemble models
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tested, CatBoost delivered the highest predictive accuracy and interpretability, effectively

delineating flood-prone zones in urban, peri-urban, and riverine settings. The spatial

distribution of flood susceptibility revealed critical hotspots along low-elevation areas and
regions with poor drainage infrastructure, providing actionable insights for urban flood
resilience planning.

The use of SHAP wvalues offered a novel perspective into the spatial drivers of
flooding, identifying distance to rivers, rainfall intensity, elevation, and urban impervious
surfaces as key contributing factors. The results are consistent with and extend upon recent
research that emphasizes the value of integrated Al and GIS techniques in flood modeling.
Compared to traditional models, the proposed approach offers greater spatial precision,
reduced classification error, and enhanced decision-making potential.

By combining ensemble learning, spatial analysis, and explainable Al, this framework
sets a benchmark for flood susceptibility mapping in other high-risk, data-scarce urban
regions. Future work may incorporate real-time sensor data, dynamic hydrological modeling,
and stakeholder input to further strengthen adaptive flood management systems.
References:

[1] M. S. Mirza Waleed, “High-resolution flood susceptibility mapping and exposure
assessment in Pakistan: An integrated artificial intelligence, machine learning and
geospatial framework,” Int. |. Disaster Risk Reduet., vol. 121, p. 105442, 2025, doi:
https://doi.org/10.1016/].ijdrr.2025.105442.

[2] R. Zia, A., Hussain, M., & Sadiq, “Socio-hydrological dynamics of flood vulnerability
in the Indus River Basin: A regional assessment,” Hydrol. Earth Syst. Sei., vol. 27, no. 1,
pp. 75-91, 2023, doi: https://doi.org/10.5194/hess-27-75-2023.

[3] M. Rahman, Z. U., Ashraf, M., & Ali, “Flood risk in Pakistan: A historical overview
and policy perspective,” Nat. Hazards, vol. 117, pp. 519-540, 2023, doi:
https://doi.org/10.1007/s11069-023-05958-4.

(4] M. Ahmed, S., Rana, I. A., Nawaz, M. A., & Arshad, “Revisiting the 2010 Pakistan flood
disaster: A comprehensive assessment,” Naz. Hagards Rev., vol. 24, no. 2, p. 04023003,
2023, doi: https://doi.org/10.1061/(ASCE)NH.1527-6996.0000597.

[5] M. Rahmati, O., Zeinivand, H., & Besharat, “Flood hazard zoning using a GIS-based
index combining hydrologic and morphometric parameters: A case study in the
Golestan Province, Iran,” Geomatics, Nat. Hazards Risk, vol. 7, no. 3, pp. 1003-1017,
2016, doi: https://doi.org/10.1080/19475705.2015.1045043.

[6]  Z.U.Rahman e al., “GIS-based flood susceptibility mapping using bivariate statistical
model in Swat River Basin, Eastern Hindukush region, Pakistan,” Front. Environ. S¢i.,
vol. 11, 2023, doi: 10.3389/fenvs.2023.1178540.

[7]  S.Mousavi, S., Talebi, A., & Khaleghi, “Application of machine learning algorithms for
flood susceptibility mapping: A case study from northwest Iran,” Water, vol. 11, no. 8,
p- 1652, 2019, doi: https://doi.org/10.3390/w11081652.

[8] Q. B. Try, S., Mallick, J., & Pham, “Hybrid machine learning ensemble model for flood
susceptibility mapping in South Asia,” Se. Total Environ., vol. 857, p. 159553, 2023, doi:
https://doi.org/10.1016/j.scitotenv.2022.159553.

[91 M. F. Goodchild, “The validity and usefulness of laws in geographic information
science and geography,” Ann. Assoc. Am. Geogr., vol. 94, no. 2, pp. 300-303, Jun. 2004,
doi: 10.1111/].1467-8306.2004.09402008.X /ASSET//CMS/ASSET/79F716DB-
E800-4E7D-A3EB-88BBE57AE42E /].1467-8306.2004.09402008.X.FP.PNG.

[10] Y. Wang, S., Armstrong, M. P., & Liu, “Spatial cyberinfrastructure: Connecting data,
computing, and people,” Comput. Environ. Urban Syst., vol. 34, no. 4, pp. 291-295, 2010,
doi: https://doi.org/10.1016/j.compenvurbsys.2010.05.001.

[11]  C.Zhu, A. X, Yang, L., & Qin, “A review of spatial intelligent modeling in geographical

Nov 2023 | Vol 01 | Issue 02 Page | 84



OPEN

L":"}:

) ACCESS . . ~ . . .
' Frontiers in Computational Spatial Intelligence

[14]

[15]

[10]

18]

[19]

[20]

23]

[24]

25]

[20]

data analysis,”  Awn.  GIS, vol. 24, no. 2, pp. 063-76, 2018, doi:
https://doi.org/10.1080/19475683.2018.1492076.

B. Pradhan, S. Lee, A. Dikshit, and H. Kim, “Spatial flood susceptibility mapping using
an explainable artificial intelligence (XAI) model,” Geosci. Front., vol. 14, no. 6, p.
101625, Nov. 2023, doi: 10.1016/]J.GSF.2023.101625.

M. Ahmad, S., Farooq, U., & Ashraf, “Integrated flood hazard modeling using remote
sensing, hydrodynamic simulation, and machine learning: A case study from Pakistan,”
Nat. Hazards,  vol. 118, no. 2, pp. 1123-1140, 2025, doi:
https://doi.org/10.1007/s11069-025-06127-9.

H. Waleed, A., & Sajjad, “National-scale flood susceptibility mapping using machine
learning and geospatial datasets in Pakistan,” Sc. Rep., vol. 15, p. 5213, 2025, doi:
https://doi.org/10.1038/s41598-025-21547-3.

M. Hussain et al, “GIS-Based Multi-Criteria Approach for Flood Vulnerability
Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan,” Swustain.
2021, V'ol. 13, Page 3126, vol. 13, no. 6, p. 3126, Mar. 2021, doi: 10.3390/SU13063126.
P. J. Sreenath Vemula, Filippo Gatti, “Graph Transformer-Based Flood Susceptibility
Mapping: Application to the French Riviera and Railway Infrastructure Under Climate
Change,” Res. gate, 2025, doi: 10.13140/RG.2.2.34415.14248.

X. Situ, Z., Tang, C., & Li, “Deep learning for flood prediction: A hybrid CNN—RNN
model for spatiotemporal flood susceptibility analysis,” J. Hydrol., vol. 627, p. 130305,
2023, doi: https://doi.org/10.1016/j.jhydrol.2023.130305.

N. Franchi, R., Bhattacharjee, A., & Mustafee, “BayFlood: A vision-language
framework for explainable flood risk mapping in urban environments,” Environ. Model.
Softw., vol. 169, p. 105710, 2025, doi: https://doi.org/10.1016/j.envsoft.2025.105710.
R. van Hespen e¢f al., “Mangrove forests as a nature-based solution for coastal flood
protection: Biophysical and ecological considerations,” Water Sci. Eng., vol. 16, no. 1,
pp. 1-13, Mar. 2023, doi: 10.1016/].WSE.2022.10.004.

I. Elkhrachy, “Flash Flood Water Depth Estimation Using SAR Images, Digital
Elevation Models, and Machine Learning Algorithms,” Remote Sens. 2022, 1ol. 14, Page
440, vol. 14, no. 3, p. 440, Jan. 2022, doi: 10.3390/RS14030440.

L. Li, M., Zhang, Y., & Zhao, “Comparative assessment of machine learning models
for flood susceptibility mapping in China,” J. Hydrol., vol. 631, p. 129528, 2024, doi:
https://doi.org/10.1016/j.jhydrol.2024.129528.

G. A. Pourghasemi, H. R., Mohammadi, F., & Ghanbarian, “Flood susceptibility
modeling using RF, XGBoost, and deep learning approaches: A comparative study,” J.
Environ. Manage., vol. 337, p. 117750, 2023, doi:
https://doi.org/10.1016/j.jenvman.2023.117750.

S. Sajjadi, S. S., Arabameri, A., & Lee, “Benchmarking CatBoost, XGBoost, and
Random Forest for natural hazard prediction: A landslide case study,” Remote Sens., vol.
15, no. 1, p. 104, 2023, doi: https://doi.org/10.3390/rs15010104.

J. J. C. Ataollah Shirzadi, Aryan Salvati, Marzieh Hajizadeh Tahan, Himan Shahabi,
Ehsan Jafari Nodoushan, Mohsen Ramezani, Mazlan Hashim, “Urban flood
susceptibility mapping using deep and machine learning algorithms as a management
tool: A case study of Sanandaj City, Iran,” Ecol Indic., vol. 178, p. 113886, 2025, doi:
https://doi.org/10.1016/j.ecolind.2025.113886.

S. C. Bikram Manandhar, “Urban Flood Hazard Assessment and Management
Practices in South Asia: A Review,” Land, vol. 12, no. 3, p. 627, 2023, doi:
https://doi.org/10.3390/1and12030627.

M. Rafiq, L., Akhtar, S., & Farooq, “Towards interpretable flood prediction: Integrating
SHAP values in ensemble learning models,” Comput. Environ. Urban Syst., vol. 101, p.

Nov 2023 | Vol 01 | Issue 02 Page | 85



A
OPEN () ACCESS . . . . .
Frontiers in Computational Spatial Intelligence

101918, 2023, doi: https://doi.org/10.1016/j.compenvurbsys.2023.101918.

[27]  B. Mtshawu, J. Bezuidenhout, and K. K. Kilel, “Spatial autocorrelation and hotspot
analysis of natural radionuclides to study sediment transport,” J. Environ. Radioact., vol.
264, p. 107207, Aug. 2023, doi: 10.1016/].JENVRAD.2023.107207.

[28] N. Mahdizadeh Gharakhanlou and L. Perez, “Spatial Prediction of Current and Future
Flood Susceptibility: Examining the Implications of Changing Climates on Flood
Susceptibility Using Machine Learning Models,” Entropy 2022, 17ol. 24, Page 1630, vol.
24, no. 11, p. 1630, Nov. 2022, doi: 10.3390/E24111630.

[29] A.T.Phan, T. Q., Bui, D. T., & Tran, “Riverine flood susceptibility assessment using
hybrid models in the Mekong Delta,” Hydrol. Res., vol. 54, no. 4, pp. 683—698, 2023,
doi: https://doi.org/10.2166/nh.2023.018.

@ @ Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

Nov 2023 | Vol 01 | Issue 02 Page | 86



