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The hippocampus is widely recognized for its role in spatial memory and navigation,

particularly through the phenomenon of neural replay. This study proposes a

computational model that simulates hippocampal replay to support flexible navigation
in dynamic maze environments. By integrating biologically inspired replay mechanisms with a
reinforcement learning framework, the model was tested in three types of mazes—Iinear, Y-
shaped, and open-field. The replay-based model significantly outperformed traditional models
like DQN and A3C in success rate, path efficiency, and learning speed. The results underscore
the importance of temporal sequence replay in forming goal-directed trajectories and adapting
to changing environments. Comparisons with neuroscientific literature confirm the plausibility
of the model, aligning with empirical findings on the predictive and retrospective roles of
hippocampal replay in animal studies. This work offers a novel computational perspective on
cognitive mapping and sets the foundation for developing more adaptive and human-like Al
navigation systems.
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Introduction:

The ability to navigate flexibly through a dynamic environment is a hallmark of
intelligent behavior, observed both in biological organisms and artificial agents. Recent
advances in systems neuroscience continue to affirm the pivotal role of the hippocampus in
supporting such flexible spatial navigation [1]. In particular, hippocampal place cells (PCs)—
neurons that exhibit location-specific firing—are now well-established as critical components
for encoding spatial memory. Contemporary studies have extended the understanding of
“replay” events, where sequences of place cell activity are spontaneously reactivated during
sleep or restful wakefulness. Far from being simple recapitulations of past experiences, these
replay sequences are increasingly recognized as predictive and adaptive, supporting both
memory consolidation and future-oriented planning [2]; [3]. For example, recent experiments
by [4]using reconfigurable maze designs demonstrate that hippocampal replays flexibly adapt
to environmental constraints such as barriers, even when the underlying place field geometry
remains unchanged. These findings suggest that the hippocampus encodes topological
constraints dynamically, not merely through global remapping, but through context-sensitive
replay patterns that conform to layout changes.

Despite this growing body of empirical evidence, most computational models still fall
short of replicating these biologically realistic replay dynamics. Traditional attractor network
models continue to rely on Euclidean distances between place field centers when defining
synaptic connectivity. This simplification fails to account for the influence of real-world
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obstructions, often resulting in simulated replay paths that cut unrealistically through walls or
barriers [5]. Furthermore, these models typically neglect the interplay between hippocampal
replays and downstream decision-making circuits, such as those in the striatum. Although
reinforcement learning (RL) frameworks have made strides in modeling goal-directed
behavior, they generally abstract away underlying neural processes and lack direct compatibility
with observed hippocampal and striatal physiology [6][7].

While recent empirical studies have highlighted the adaptive and context-sensitive
nature of hippocampal replay, computational neuroscience has yet to fully explain how these
layout-conforming sequences are generated and how they inform flexible decision-making. A
significant gap remains in modeling the bidirectional relationship between replay and
learning—particularly how biologically plausible learning rules can support both topology-
aware encoding and reward-driven behavior. Moreover, the computational role of replay in
modulating striatal activity and guiding behavior in complex, dynamically changing
environments is poortly characterized.

Objectives of the Study:

To address the outlined challenges, this study introduces a biologically plausible
computational model of hippocampal replay that is capable of adapting to environmental
topology and supporting flexible, goal-directed navigation. Central to this model is the
construction of a place-cell-based network, in which the synaptic connections are not based
on Euclidean distances but instead reflect the shortest navigable paths within the environment.
This design ensures that internally generated replay trajectories conform to physical barriers
and accurately represent maze-like structures. To enable the learning of such topology-aware
connections, the model employs a Hebbian-like synaptic plasticity rule that captures inter-
place cell connectivity during exploration, thus facilitating the emergence of replay sequences
aligned with the actual layout of the environment.

Novelty Statement:

This study presents a novel framework that bridges the gap between high-level
reinforcement learning and biologically grounded models of hippocampal function. Unlike
prior models that use simplified spatial representations and abstract learning rules, our
approach incorporates realistic environmental constraints, biologically inspired synaptic
plasticity, and direct replay-based influence on decision-making circuitry. The integration of
hippocampal replays with downstream striatal learning offers a unified and testable hypothesis
for how animals and artificial agents can flexibly adapt to novel environments. To our
knowledge, this is the first computational model to simultaneously address layout-conforming
replay, biological plausibility, and reward-driven planning in a closed-loop system—offering
predictions that can be empirically validated in animal and robotic studies.

Literature Review:

Spatial navigation is a fundamental cognitive function that relies heavily on the
hippocampus, particulatly its network of place cells that encode specific locations within an
environment. Recent research has shown that hippocampal replay—where sequences of place-
cell activations are re-expressed during rest or sleep—plays a critical role not only in memory
consolidation but also in planning future actions and supporting flexible navigation [2]; [8§].
These replay sequences are not mere repetitions of past experiences but dynamically adapt to
the structure of the environment. For example, replay trajectories have been observed to
reroute around obstacles and environmental changes, suggesting a topological sensitivity that
many computational models have failed to capture [9].

Traditional computational models often represent place-cell connectivity based on
Euclidean distances, which leads to replay sequences that can violate realistic environmental
constraints. This lack of topological flexibility limits their utility in simulating real-world
navigation, where obstacles and barriers alter the shortest navigable path. Some models have
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incorporated short-term synaptic plasticity or random replays to account for variability, but
these approaches lack biological realism and often fail to encode persistent topological changes
[10].

Recent experimental studies have also emphasized the role of neuromodulators,
particularly dopamine, in shaping replay content. The author in [11] demonstrated that
dopamine signaling, particularly from the ventral tegmental area (VTA), is essential for
promoting spatially localized replay in novel environments. Blocking dopaminergic input
disrupted goal-directed replay without affecting replays in familiar contexts, indicating that
replay serves as a predictive mechanism tightly coupled to motivational states [12]. This finding
challenges the traditional view that reward-based learning in the brain is primarily guided by
temporal-difference errors, pointing instead toward more biologically grounded mechanisms
involving three-factor learning rules that incorporate co-activation, eligibility traces, and
dopaminergic modulation [13].

To bring biological plausibility into artificial agents, recent modeling efforts have
started to integrate hippocampal-like representations into navigation systems. For example,
[14] developed a hippocampus—parietal cortex-inspired spiking neural architecture capable of
real-time navigation in robotic agents. This model allowed for dynamic mapping and obstacle
avoidance but lacked a reward-driven replay mechanism that could adapt to changing goals or
environments. In artificial intelligence, reinforcement learning (RL) agents commonly use
experience replay buffers to revisit past trajectories, yet these are disconnected from biological
replay mechanisms and often fail to respect environmental topology [15]. Although some
hybrid architectures have embedded grid-cell representations into RL frameworks for more
robust exploration and spatial memory [16][17], they seldom model replay as a flexible,
topologically-aware planning mechanism.

Opverall, the literature highlights three critical limitations in current models. First,
replay mechanisms in computational systems often disregard the structural layout of
environments, limiting their realism and applicability. Second, while recent neuroscience has
uncovered dopamine’s regulatory influence on replay, computational models have yet to
integrate this in a biologically plausible manner. Third, there is a noticeable lack of models that
bridge hippocampal replay with reward-based decision-making circuits, particularly the
striatum, through mechanisms like three-factor learning. Addressing these gaps could offer a
more unified, biologically inspired model of navigation that incorporates environmental
constraints, adaptive planning, and reward sensitivity.

Methodology:
Experimental Setup:

This study aimed to develop and evaluate a biologically plausible computational model
simulating flexible spatial navigation through hippocampal replay. A virtual maze environment
was designed using Python and Unity ML-Agents, mimicking T-mazes and open field
navigation tasks commonly used in rodent studies [8]. Three maze environments were created:
a simple linear track, a double Y-maze with decision points, and a dynamically changing open
field with removable walls. Each environment included specific reward zones, bartiers, and
alternative paths to test replay flexibility.

Model Architecture:

The proposed model integrates hippocampal place cells, replay mechanisms, and
downstream learning by a striatal-like system. A grid of 20X20 virtual place cells was generated
to simulate hippocampal spatial representation. Fach cell became active when the agent was
within a corresponding spatial location, mimicking empirical place field data. Replay events
were triggered during rest phases and implemented using a modified version of prioritized
experience replay, constrained to follow topologically valid paths learned during exploration.
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Synaptlc weights between place cells followed spike-timing dependent plasticity (STDP) rules
modulated by short-term facilitation, as per the model.

The striatal layer received temporal sequences of place cell activations and updated its
value estimates through dopamine-modulated Hebbian learning, reflecting the framework.
Rewards were only delivered when the agent reached designated goal states, and prediction
errors were calculated locally to update weights in the value function.

Data Collection:

The agent underwent 1000 training episodes per maze environment, each consisting
of an exploration phase (movement with reward-secking) followed by a rest phase (replay
generation). Behavioral metrics such as success rate, number of steps to goal, and replay
trajectory characteristics were logged. Replay events were analyzed for (i) alignment with actual
paths, (i) generation of novel valid trajectories, and (iif) deviation from Euclidean shortest
paths in the presence of barriers. Control experiments were conducted by disabling replay,
using non-topological models, and comparing with standard reinforcement learning baselines
(e.g., DQN, A3C).

Evaluation Metrics:

Replay fidelity was quantified using a path conformity index, calculated as the ratio of
valid steps in a replayed trajectory over the total steps, excluding steps that violated maze
topology. Learning efficiency was measured as the number of episodes required to reach an
80% success rate. Generalization was evaluated by introducing new maze layouts and assessing
the agent’s performance using previously learned policies.

All simulations were conducted on an NVIDIA RTX 3060-equipped system running
Ubuntu 22.04. Statistical analysis was performed using Python libraries (NumPy, SciPy,
Matplotlib), and p-values < 0.05 were considered statistically significant. A total of 3000
episodes across 3 mazes formed the final dataset for evaluation.

Results:

The performance of the hippocampal replay-based navigation model was assessed
across three distinct maze configurations: the Linear Track, the Y-Maze, and the Open Field
Arena. Fach of these environments was designed to introduce varying degrees of spatial
complexity, thereby testing the model’s ability to adaptively learn and plan routes through
simulated replay events. In terms of success rate, the model exhibited robust goal-reaching
behavior across all mazes. It achieved a 92% success rate in the Linear Track, 88% in the Y-
Maze, and 81% in the Open Field. This gradual decline in success as the environment became
more complex reflects the increased spatial demands and underscores the critical role of
memory consolidation via hippocampal replay in more ambiguous and dynamic environments.

Another important metric for evaluating navigational performance was the average
number of steps taken to reach the target location. The hippocampal replay model
demonstrated strong efficiency in all configurations, requiring approximately 15 steps in the
Linear Track, 22 steps in the Y-Maze, and 35 steps in the Open Field. These values were
significantly better than those produced by the baseline Deep Q-Network (DQN), which
averaged 27, 38, and 61 steps in the same respective environments. This improvement suggests
that the hippocampal replay model not only learns the layout of the environment but also
develops more direct and optimal trajectories to the goal.

A visual analysis of the agent’s performance across the three maze types clearly
demonstrates the effectiveness of the hippocampal replay mechanism. Over the course of
1000 training episodes, agents with replay consistently achieved higher success rates and faster
learning compared to agents lacking this mechanism. These results highlight the replay
module's role in enhancing flexible spatial learning and adapting previously acquired
knowledge to novel scenarios.
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To further quantify spatial efficiency, the Path Conformity Index (PCI) was used as a
metric, where values closer to 1 reflect trajectories that align closely with optimal paths. The
hippocampal replay model scored a PCI of 0.96 in the Linear Track, 0.89 in the Y-Maze, and
0.82 in the Open Field. In contrast, the DQN and asynchronous advantage actor-critic (A3C)
models achieved average PCls of only 0.74 and 0.78 respectively. These results indicate that
the replay model not only reaches goals reliably but also does so through spatially efficient

trajectories.
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Figure 1. Navigation Success Rate Over Episodes with and without Hippocampal Replay

Comparative evaluations with traditional reinforcement learning methods further
highlighted the superiority of the hippocampal replay approach. Unlike DQN and A3C
models, which struggled to generalize to new goal locations and required retraining, the
hippocampal replay model demonstrated rapid adaptation, achieving competent navigation
within just five episodes after a goal shift. This rapid adaptation is made possible by the model's
use of previously stored episodes to simulate future trajectories, mimicking biologically
inspired replay mechanisms observed in hippocampal activity during offline states.
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Figure 2. Steps to Goal Comparison
To statistically validate these findings, a one-way ANOVA was conducted on key
performance metrics, including success rate, average steps to goal, and path conformity. The
analysis revealed statistically significant differences in both success rate (F(2, 24) = 9.81, p <
0.01) and path efficiency (F(2, 24) = 11.56, p < 0.01) among the models. These findings
confirm that the hippocampal replay-based navigation framework offers a measurable and

significant advantage in spatial learning and planning compared to conventional approaches.
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Discussion:

The results of our study demonstrate that a computational model incorporating
hippocampal replay significantly improves the flexibility and efficiency of spatial navigation in
complex environments compared to traditional deep reinforcement learning (DRL) methods.
This aligns with existing neuroscience literature, which posits that hippocampal replay
contributes critically to memory consolidation and planning future actions [2]. Our model's
success in dynamic and ambiguous mazes, especially the open-field scenario, reflects the
importance of internal replay for flexible decision-making—a feature inadequately addressed
by purely feedforward models like DQN and A3C.

One of the key findings in our study is the superior Path Conformity Index (PCI)
achieved by the hippocampal replay model. Such prospective replay allows animals to simulate
outcomes and make more strategic navigation choices—an idea we captured computationally
and validated against synthetic maze tasks.

Compared to the work of [14], who introduced a prioritized replay mechanism based
on model-based reinforcement learning, our model emphasizes spatial representations akin to
cognitive maps theorized by [12]. While Mattar and Daw focused on replay frequency and
reward prediction, our approach integrates place-cell activations and trajectory reconstruction,
which helps in learning optimal routes with fewer samples and better generalization—
especially visible in our model’s early convergence during training.

Interestingly, the performance drop in the open-field maze observed in our model is
consistent with studies suggesting that hippocampal replay may become less precise in more
ambiguous environments. This indicates that while replay supports flexible navigation, its
effectiveness may be modulated by the clarity of environmental cues or the complexity of
spatial layouts.

Furthermore, our findings support the argument that hippocampal replay not only
serves retrospective memory processing but also supports online planning. The author in [3]
reported awake replay in the hippocampus that corresponds with planning in rats navigating
mazes, highlighting that replay is not limited to sleep or rest. Our model mimics this real-time
usage of replay during ongoing navigation and shows a marked advantage in fewer steps and
higher reward accumulation per episode.

While our simulated environments cannot fully capture the richness of naturalistic
settings, they allow controlled exploration of how replay mechanisms influence learning
dynamics. Future studies could integrate multi-agent navigation, dynamic obstacles, or
biologically-plausible neuromodulatory controls (e.g., dopamine-driven reward signals) to
more closely approximate brain-based spatial learning systems.

July 2023 | Vol 01 | Issue 01 Page | 15




Frontiers in Computational Spatial Intelligence

Conclusion:

This study demonstrates that incorporating hippocampal-like replay mechanisms into
computational models of navigation yields significant improvements in flexibility, path
optimization, and learning efficiency across various maze environments. The proposed model
not only mimics biological processes observed in rodent hippocampal activity but also bridges
theoretical neuroscience with practical Al implementations. By replaying prior trajectories, the
model effectively refines its internal spatial representation, allowing it to simulate future
actions and make informed decisions in real-time. These findings validate prior research
emphasizing the dual roles of hippocampal replay in memory consolidation and planning,
while also expanding its applicability to artificial agents navigating uncertain environments.
Ultimately, this study lays the groundwork for hybrid cognitive architectures that more closely
emulate natural intelligence, offering promising directions for both neuroscience-informed Al
and biologically grounded robotics.
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